Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.
Convergence Studies for an Adaptive Meshless Least-Squares Collocation Method
Abstract:
In this paper, we apply the recently proposed fast block-greedy algorithm to a convergent kernel-based collocation method. In particular, we discretize three-dimensional second-order elliptic differential equations by the meshless asymmetric collocation method with over-sampling. Approximated solutions are obtained by solving the resulting weighted least squares problem. Such formulation has been proven to have optimal convergence in H2. Our aim is to investigate the convergence behaviour of some three dimensional test problems. We also study the low-rank solution by restricting the approximation in some smaller trial subspaces. A block-greedy algorithm, which costs at most O(NK2) to select K columns (or trial centers) out of an M × N overdetermined matrix, is employed for such an adaptivity. Numerical simulations are provided to justify these reductions.
