The method for estimating crack propagation is based on simple beam theory. Since the concrete is not homogeneous, the strength varies from place to place within the beam element. A crack will be formed at the location where crack initiation requires the least amount of energy. This method does not estimate how the crack will start such as FEM software’s are capable of. However, we could use the formula to estimate the crack propagation angle when we know where the crack is formed. Figure 3 shows the comparison between the calculated and the experimental observation of the crack propagation.
Figure 3. Numerical calculation of crack propagation into the compression zone compared with the beam tested in the laboratory.
Modelling of Element 1:
We look at eqn (3), which is derived from the internal moment of resistance of the beam.
Figure 4. Internal forces in the beam
$\sigma_x=\frac{M_z(-y)}{I}$
(3)
$\sigma_x=\sigma_1=f_{c t k 0,05}$
Then $M=\frac{I}{(-y)} * f_{c t k 0,05}$
The height of the cross section of the beam is defined as h. The distance from the Neutral Axis (N.A) down to the bottom side of the beam will be (h −α.d) (see Figure 4).
$I_s=A_s(1-\alpha).\left(1-\frac{\alpha}{3}\right).d^2, z=d\left(1-\frac{1}{3}. \alpha\right)$
(4)
$M_R=\frac{\frac{1}{2}. b . \alpha^2. d^3 .\left(1-\frac{1}{3} . \alpha\right)}{(-(h-\alpha. d))} * f_{c t k 0,05}$
(5)
$M_{R, d}=\frac{\frac{1}{2}.b . \alpha^2 . d^3 .\left(1-\frac{1}{3} . \alpha\right)}{(-(h-\alpha .d))} * 0,567 * f_{c t k 0,05}$
(6)
Equation (5) describes the external moment that can be applied to the beam before it will form a crack on the underside of the beam $f_{t d}=\frac{\alpha_{c t}}{\gamma_c} \cdot f_{c t k 0,05}=0,567 \cdot f_{c t k 0,05}, \alpha_{c t}=0,85$ and $\gamma_c=1,5$ are factors given in the National Application document to EC2, [3]. Equation (6) is the design moment capacity.
Modelling of Element 2:
Vecchio & Collins’ theory of plates describes shell elements subjected to membrane shear forces. It is well known that concrete subjected to shear force cannot resist compression shear failure. This is when the compression diagonal in the truss-member-model fails.
We observe from element 2 that $\sigma_1$ will represent the tension force and $\sigma_2$ will represent compression. The combined effect of these forms a crack, see Figure 2. We have now the basis for an inclined crack, if we consider Element 2. The shear stress can be calculated from eqn (7) as:
$\tau=\frac{V}{b . z}=\sigma_1=f_{c t k 0,05}$
(7)
$V_R=b * d\left(1-\frac{1}{3} * \alpha\right)^* f_{c t k 0,05}$
(8)
The formula describes how large is the shear force that the beam can take before an inclined crack will occurat the support point of the beam $f_{t d}=\frac{\alpha_{c t}}{\gamma_c} \cdot f_{c t k 0,05}=0,567 \cdot f_{c t k 0,05}$ ( $\alpha_{c t}=0,85$ and $\gamma_c=1,5$ are factors given in the N.A EC2-NA 3.1.6, [3]).
Equation (9) is used to find the applied shear force for a concrete structure:
$V_{R . d}=b^* d\left(1-\frac{1}{3} * \alpha\right)^* 0,567 * f_{c t k 0,05}$
(9)
Modelling of element 3:
Element 3 is a little more complex because it varies with x and y.
$M_{(x)}=\frac{P}{2} \cdot x, \eta=\frac{E_s}{E_{c m}}, \tau_{x y}=\frac{V_y \cdot Q_y}{I_s \cdot b}, V_y=\frac{P}{2}$
(10)
$\begin{gathered}\rho=\frac{A_s}{b \cdot d}, \alpha=\sqrt{(\eta \cdot \rho)^2+2 \cdot \eta \cdot \rho}-\eta \cdot \rho \\ I_s=A_s(1-\alpha) \cdot\left(1-\frac{\alpha}{3}\right) \cdot d^2\end{gathered}$
$Q_y=(\alpha \cdot d-y) \cdot b\left[y+\left(\frac{\alpha \cdot d-y}{2}\right)\right] First\ moment\ of\ inertia$
(11)
We insert eqns (10) and (11)
$\tau_{x y}=\frac{\frac{P}{2} \cdot\left[(\alpha \cdot d-y) \cdot b\left[y+\left(\frac{\alpha \cdot d-y}{2}\right)\right]\right]}{I_s \cdot b}$
(12)
Inserting eqns (4) and (12) into eqn (1) and using the crack formation criteria $\sigma_1=f_{c t k 0,05}$, one can obtain the equation below. From the equation, the applied load P is solved using Mathcad, the result being given as in eqn (13):
$f_{c t k}=\frac{\frac{\frac{P}{2} \cdot x \cdot(-y)}{I_s}}{2}+\sqrt{\frac{\left[\frac{\frac{P}{2} \cdot x \cdot(-y)}{I_s}\right]^2}{4}+\left[\frac{\frac{P}{2} \cdot\left[(\alpha \cdot d-y] \cdot b \cdot\left[y+\left(\frac{\alpha \cdot d-y}{2}\right)\right]\right.}{I_s \cdot b}\right]} solve,\\ P \rightarrow\left[\begin{array}{c}\frac{8 \cdot I_s \cdot f_{c t k} \cdot \sqrt{\frac{\alpha^4 \cdot d^4}{4}-\frac{\alpha^2 \cdot d^2 \cdot y^2}{2}+\frac{x^2 \cdot y^2}{4}+\frac{y^4}{4}}+4 \cdot I_s \cdot f_{c t k} \cdot x \cdot y}{\left(y^2-\alpha^2 \cdot d^2\right)^2} \\ \frac{8 \cdot I_s \cdot f_{c t k} \cdot \sqrt{\frac{\alpha^4 \cdot d^4}{4}-\frac{\alpha^2 \cdot d^2 \cdot y^2}{2}+\frac{x^2 \cdot y^2}{4}+\frac{y^4}{4}}-4 \cdot I_s \cdot f_{c t k} \cdot x \cdot y}{\left(y^2-\alpha^2 \cdot d^2\right)^2}\end{array}\right]\\ P(x, y)=\frac{8 \cdot I_s \cdot f_{c t k} \cdot \sqrt{\frac{\alpha^4 \cdot d^4}{4}-\frac{\alpha^2 \cdot d^2 \cdot y^2}{2}+\frac{x^2 \cdot y^2}{4}+\frac{y^4}{4}}+4 \cdot I_s \cdot f_{c t k} \cdot x \cdot y}{\left(y^2-\alpha^2 \cdot d^2\right)^2}$
(13)
The crack propagation angle is obtained by inserting eqns (2) and (12) and the result is given in eqn (14).
$\theta=\frac{1}{2} \tan ^{-1}\left[\frac{2, \frac{\frac{P}{2} \cdot\left[(\alpha \cdot d-y) \cdot b \cdot\left[y+\left(\frac{\alpha \cdot d-y}{2}\right)\right]\right]}{I_S \cdot b}}{\frac{\frac{P}{2} \cdot x \cdot y}{I_S}}\right]$
(14)
Equation (14) is used to determine the crack angle under various loadings, $P$, in the $x-y$ coordinate system. $\sigma_1$ and $\sigma_2$ are dependent on the distance x from the support, and the distance $y$ relative to the neutral axis. A crack will theoretically form along a critical path where the first principal stress exceeds the characteristic tensile strength of the concrete, i.e. when $\sigma_1=f_{c t k 0,05}$.
The angle of the crack can be calculated considering the values of $\tau$ and $\sigma_1$ along this critical path.
$x \in\left[(h-\alpha .d), \frac{L}{2}\right]$
$y \in[0, \alpha . d]$
$y=0=>\tau=\max , \sigma_x=0$
$y=\alpha . d=>\tau=0, \sigma_x=\max$