[1] Webber, C., Prosthetic Sockets: Assessment of Thermal Conductivity, Master Disserta- tion, University of Akron, 2014.
[2] Bahraizadh, M., Below knee prosthesis, Department of Orthotics and Prosthetics slide player.com / slide / 4188530.
[3] Dickson orthotics and prosthetics, available at: www.dicksonop.com.
[4] Klute, G.K., Rowe, G.I., Mamishev, A.V. & Ledous, W.R., The thermal conductivity of prosthetic sockets and liners. Prosthetics and Orthotics International, 31, pp. 292–299, 2007. [Crossref] [5] Peery, J.T., Ledoux, W.R. & Klute, G.K., Residual limb skin temperature in transtibial sockets. Journal of Rehabilitation Research and Development, 42, pp. 147–154, 2005. [Crossref] [6] Ghoseiri, K. & Safari, M.R., Prevalence of heat and perspiration discomfort inside pros- theses: literature review. Journal of Rehabilitation Research and Development, 51, pp. 855–868, 2014. [Crossref] [7] Barnes, G.H., Skin health and stump hygiene artificial limbs. In Selected Articles from Artificial Limbs, Krierger: Huntington, New York, 1970.
[8] Branemark, R. & Hagberg, K., Consequences of non-vascular-femoral amputations: a survey of quality of life, prosthetic use and problems. Prosthetics and Orthotics Inter- national, 25, pp. 186–194, 2001. [Crossref] [9] Hachiuska, K., Matsushima, Y., Ohmine, S. & Shinkoda, K., Moisture permeability of the total surface bearing prosthetic socket with a silicon liner: is it superior to the patella-tendon bearing prosthetic socket? Archives of Physical Medicine and Rehabili- tation, 82, pp. 1286–1289, 2001.
[10] Meulenbelt, H.E., Geertzen, J.H., Jonkman, M.F. & Dijkstra, P.U., Determinants of skin problems of the stump in lower limb amputees. Archives Physical Medicine and Rehabilitation, 90, 74–81, 2009. [Crossref] [11] Koc, E., Tunca, M., Akar, A., Erbil, H., Demiralp, B. & Arca, E., Skin problems in ampu- tees: a descriptive study. International Journal of Dermatology, 47, pp. 463–466, 2008. [Crossref] [12] Calum, C., Lyon, M.A., Kulkarni, J., Zimerson, E. & Beck, M.H., Skin disorders in amputees. Journal of the American Academy of Dermatology, 42, pp. 501–507, 2000. [Crossref] [13] Gustavsson, M., Karawacki, E. & Gustafsson, S.E., Thermal conductivity, thermal dif- fusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Review of Scientific Instruments, 65, pp. 3856–3859, 1994. [Crossref] [14] http://www.thermoconcept-sarl.com/index.php/en/thermal-analysis-ndt-systems/hot- disk-thermal-constants-analyzer/hot-disk-thermal-conductivity.
[15] Wissler, E.H., A mathematical model of the human thermal system. Bulletin of Math- ematical Biophysics, 26, pp. 147–165, 1964. [Crossref] [16] Gordon, R.G., Roemer, R.B. & Horvath, S.M., A mathematical model of the human temperature regulatory system-transient cold exposure response. IEEE Transaction on Biomedical Engineering, 6, pp. 434–444, 1976. [Crossref] [17] Pennes, H.H., Analysis of tissue and arterial blood temperatures in the resting human foream. Journal of Applied Physiology, 1, pp. 93–122, 1948.
[18] Peery, J.T., Klute, G.K., Blevins, J.J. & Ledoux, W.R., A three-dimensional finite element model of the transibial residual limb and prosthetic socket to predict skin tem- peratures. IEEE Transactions of Neural Systems and Rehabilitation Engineering, 14, pp. 336–343, 2006. [Crossref] [19] Klute, G.K. & Ledoux, W.R., Does activity affect residual limb skin temperature? Clinical Orthopaedics and Related Research, 472, pp. 3062–3067, 2014. [Crossref] [20] Rugh, J.P., Farrington, R.B., Vlahinos, A., Burke, R., Huizenga, C. & Zhang, H., Predicting human thermal comfort in a transient none-uniform thermal environment. Journal of Applied Physiology, 92, pp. 721–727, 2004. [Crossref] [21] Baars, E.C.T. & Geertzen, J.H.B., Literature review of the possible advantages of sili- con liner socket use in trans-tibial prostheses. Prosthetics and Orthotics International, 29, pp. 27–37, 2005. [Crossref] [22] Isik, H., Design and construction of thermoelectric footwear heating system for illness feet. Journal of Medical Systems, 29, pp. 627–631, 2005.[23] Lee, W.C.C. & Zhang, M., Using computational simulation to aid in the prediction of socket fit: a preliminary study. Medical Engineering and Physics, 29, pp. 923–929, 2007.
[23] Davis, K.D. & Hunter, J.P., Dissociation of phantom limb phenomena from stump tactile spatial acuity and sensory thresholds. Brain, 128, pp. 308–320, 2005.
[24] Klute, G.K., Glaister, B.C. & Berge, J.S., Prosthetic liners for lower limb amputee: a review of the literature. Prosthetics and Orthotics International, 34, pp. 146–153, 2010. [Crossref] [25] Sanders, J.E., Murthy, R., Cagle, J.C., Allyn, K.J., Phillips, R.H. & Otis, B.P., De- vice to monitor sock use in people using prosthetic limbs: technical report. Journal of Rehabilitation Research & Development, 49, pp. 1229–1238, 2012.
[26] Han, Y., Liu, F., Dowd, G. & Zhe, J., A thermal management device for a lower-limb prosthesis. Applied Thermal Engineering, 82, pp. 246–252, 2015. [Crossref] [27] Webber, C.M. & Davis, B.L., Design of a novel prosthetics socket: assessment of the thermal performance. Journal of Biomechanics, 48, pp. 1294–1299, 2015. [Crossref] [28] Han, Y., Liu, F., Zhao, L. & Zhe, J., An automatic and portable prosthetic cooling device with high cooling capacity based on phase change. Applied Thermal Engineering, 104, pp. 243–248, 2016. [Crossref]