1.
Jovanovic, J., Pashtrapanska, M., Frohnapfel, B., Durst, F., Koskinen, J. & Koskinen, K., On the mechanism responsible for turbulent drag reduction by dilute addition of high polymers: theory, experiments, simulations, and predictions. Journal of Fluids Engineering, 128(1), pp. 118–130, 2006.
2.
Watanabe, K., Udagawa, Y. & Udagawa, H., Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. Journal of Fluid Mechanics, 381, pp. 225–238, 1999.
3.
Craig, V.S.J., Neto, C. & Williams, D.R.M., Shear-dependent boundary slip in an aque- ous Newtonian liquid. Physical Review Letters, 87(5), 054504, 2001.
4.
Barrat, J.L. & Bocquet, L., Large slip effect at a nonwetting fluid-solid interface. Physi- cal Review Letters, 82(23), pp. 4671-4674, 1999.
5.
Gogte, S., Vorobieff, P., Truesdell, R., Mammoli, A., Swol, F.V., Shah, P. & Brinker, C.J., Effective slip on textured superhydrophobic surfaces. Physics of Fluids, 17(5), 51701, 2005.
6.
Truesdell, R., Mammoli, A., Vorobieff, P., Swol, F.V. & Brinker, C.J., Drag reduction on a patterned superhydrophobic surface. Physical Review Letters, 97(4), 044504, 2006. [Crossref] 7.
Prakash, S.S., Brinker, C.J., Hurd, A.J. & Rao, S.M., Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature, 374, pp. 439-443, 1995.
8.
Zhu, Y. & Granick, S., Rate-dependent slip of Newtonian liquid at smooth surfaces. Physical Review Letters, 87(9), 096105, 2001. [Crossref] 9.
Navier, C.L., Memoire sur les lois du mouvement des fluides. Mémoires de l’Academie Royale des Sciences de l’Institut de France, 6, pp. 389–440, 1823.
10.
Mhetar, V. & Archer, L.A., Slip in entangled polymer solutions. Macro-molecules,
11.
Rothstein, J.P., Slip on superhydrophobic surfaces. Annual Review of Fluid Mechanics,
12.
Lee, T., Charrault, E. & Neto, C., Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations. Advances in Colloid and Interface Science, 210, pp. 21–38, 2014.
13.
Daniello, R., Valle, K.D. & Rothstein, J., Slipping through the water: A study of super- hydrophobic hydrofoils. In APS Meeting Abstracts, 1, p. 24007, 2012.
14.
Daniello, R., Muralidhar, P., Carron, N., Greene, M. & Rothstein, J.P., Influence of slip on vortex-induced motion of a super-hydrophobic cylinder. Journal of Fluids and Structures, 42, pp. 358–368, 2013.
15.
Haibao, H., Peng, D., Feng, Z., Dong, S. & Yang, Wu., Effect of hydrophobicity on turbulent boundary layer under water. Experimental Thermal and Fluid Science, 60, pp. 148–156, 2015.
16.
Panton, R.L., Incompressible Flow, John Wiley & Sons, 2006.
17.
Westerweel, J., Fundamentals of digital particle image velocimetry. Measurement Sci- ence and Technology, 8(12), pp. 1379-1392, 1997.
18.
Prasad, A.K., Adrian, R.J., Landreth, C.C. & Offutt, P.W., Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Experiments in Fluids, 13(2–3), pp. 105–116, 1992.