Javascript is required
[1] Glassman, I., Yetter, R.A. & Glumac, N.G., Chapter 4 - Flame phenomena in premixed combustible gases. Combustion, 5th edn, Academic Press: Cambridge, pp. 147–254, 2015.
[2] Bray, K.N.C., Libby, P.A., Masuya, G. & Moss, J.B., Turbulence production in premixed turbulent flames. Combustion Science and Technology, 25, pp. 127–140, 1981. [Crossref]
[3] Boulahlib, M.S., Renou, B., Taupin, B., Boukhalfa, A. & Nemouchi, Z., Experimental study of the influence of the equivalence ratio and turbulence on CH4-air premix flame in a Bunsen burner using Laser tomography. Sciences et Technologie, Série B, University Mentouri Constantine No. 22B, pp. 65–78, 2004.
[4] Boulahlib, M.S., Chekired, M. & Boukebbab, S., Turbulence effect on lean premixed methane-air flame in a Bunsen burner. WIT Transactions on Ecology and the Environment, 186, pp. 719–725, 2014. [Crossref]
[5] Miles, P.C. & Gouldin, F.C., Mean reaction rates and flamelet statistics for reaction rate modeling in premixed turbulent flames. Proceeding 24th Symposium on Combustion, The Combustion Institute, pp. 477–484, 1992.
[6] Bray, K.N.C., Champion, M. & Libby, P.A., Mean reaction rates in premixed turbulent flames. Proceeding 22th Symposium (international) on Combustion, The Combustion Institute, pp. 763–769, 1988.
[7] Plessing, T., Kortschik, C., Peters, N., Mansour, M.S. & Cheng, R.K., Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proceeding 28th Symposium on Combustion, Combustion Institute, pp. 359–366, 2000. [Crossref]
[8] Deschamps, B., Etude spatiale et temporelle de la structure dynamique et scalaire des flammes turbulentes de premelange méthane-air, Ph.D thesis, Université d’Orléans, France, 1990.
[9] Fragner, R., Halter, F., Mazellier, N., Chauveau, C. & Gökalp, I., Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proceedings of the Combustion Institute, 35(2), pp. 1527–1535, 2015. [Crossref]
[10] Armstrong, N.W., Planar Flowfield Measurements in Premixed Turbulent Combustion, Cambridge University, 1992.
[11] Driscoll, J.F., Sutkus, D.J., Roberts, W.M.L., Post, M.E. & Goss, L.P., The strain exerted by a vortex on a flame determined from velocity field images. Combustion Science and Technology, 96, pp. 213–229, 1994. [Crossref]
[12] Frank, J.H., Lyons, K.M. & Long, M.B., Measurement of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combustion and Flame, 107, pp. 1–12, 1996. [Crossref]
[13] Kalt, P.A.M. & Bilger, R.W., Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combustion and Flame, 129(4), pp. 401–415, 2002. [Crossref]
[14] Chen, Y.C. & Bilger, R.W., Detailed measurements of local front structures in stagnation-type turbulent premixed flames. Proceeding of the Combustion Institute, 30, pp. 801–808, 2004. [Crossref]
[15] Chekired, M., Nemouchi, Z. & Boulahlib, M.S., Numerical investigation of turbulent premixed methane/air jet flame using peters and williams reduced mechanism. International Journal of Fluid Mechanic Research, 41(1), pp. 31–50, 2014. [Crossref]
[16] Battista, F., Troiani, G. & Picano, F., Fractal scaling of turbulent premixed flame fronts: application to LES. International Journal of Heat and Fluid Flow, 51, pp. 78–87, 2015. [Crossref]
[17] Tamadonfar, P. & Gülder, Ö.L., Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames. Combustion and Flame, 161(12), pp. 3154–3165, 2014. [Crossref]
[18] Tamadonfar, P. & Gülder, Ö.L., Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combustion and Flame, 162(12), pp. 4417–4441, 2015. [Crossref]
[19] Tamadonfar, P. & Guilder, Ö.L., Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Experimental Thermal and Fluid Science, 73, pp. 42–48, 2016. [Crossref]
[20] Levent¸iu, C., Renou, B., Da˘ na˘ ila˘ , S. & Isvoranu, D., Accurate measurements and analysis of the thermal structure of turbulent methane/air premixed flame. Energy Procedia, 85, pp. 329–338, 2016. [Crossref]
[21] Maurice, G., Thiesset, F., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I. & Kourta, A., Scale analysis of the flame front in premixed combustion using proper orthogonal decomposition. Experimental Thermal and Fluid Science, 73, pp. 109– 114, 2016. [Crossref]
[22] Boyer, L., Laser tomograhic method for flame front movement studies. Combustion and Flame, 39, pp. 321–323, 1980. [Crossref]
[23] Bingham, D.C., Gouldin, F.C. & Knaus, D.A., Crossed tomography laser-plane direct measurement of the surface flamelet normal. Proceeding 27th (International) Symposium on Combustion, The Combustion Institute, pp. 77–84, 1998. [Crossref]
[24] Zhang, Y., Chew, T.C. & Bray, K.N.C., Displacement particle image velocimetry, lecture series, Von Karman Institute for Fluid Dynamics, Belgium, 1988.
[25] Borghi, R. & Destriau, M., La combustion et la flamme, edn Technip Paris, pp. 47–48, 1995.
[26] Vagelopoulos, C.M., Egolfopoulos, F.N. & Law, C.K., Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Twenty-Fifth Symposium (International) on Combustion, 25, pp. 1341–1347, 1994. [Crossref]
Search

Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique

M.S. Boulahlib,
M. Chekired,
M. Benzitouni,
S. Boukebbab
LITE, University Mentouri Constantine, Algeria
International Journal of Computational Methods and Experimental Measurements
|
Volume 4, Issue 3, 2016
|
Pages 321-335
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

This work is an experimental study of the dynamic fields of a turbulent premixed methane-air flame in a Bunsen burner. The Particle Image Velocimetry (PIV) is used to determine the dynamic fields, and Laser Sheet Tomography (LST) for the flame fronts. The turbulent main jet has a Reynolds number Re = 10 000. Turbulence is generated using perforated grids having three whose provide different inlet turbulence intensities. Velocity fields are measured for various equivalence ratio (F = 0.6–1.3) and different axial flame positions. For the reactive jet, interesting results are obtained concerning the dynamic field and the flame front. It is shown that radial profiles of U and V correspond to the axial positions located before the end of the potential core in the reactive jet. The velocity increases at the jet center to 20 m/s, and is less influenced by turbulent mixing in the flame. The greatest velocity and turbulent kinetic energy are obtained using the grid with the smallest ratio (d/M). Most important values of the radial velocity correspond to the lean flames.

Keywords: Dynamic field, Grid turbulence, Premixed combustion

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References
[1] Glassman, I., Yetter, R.A. & Glumac, N.G., Chapter 4 - Flame phenomena in premixed combustible gases. Combustion, 5th edn, Academic Press: Cambridge, pp. 147–254, 2015.
[2] Bray, K.N.C., Libby, P.A., Masuya, G. & Moss, J.B., Turbulence production in premixed turbulent flames. Combustion Science and Technology, 25, pp. 127–140, 1981. [Crossref]
[3] Boulahlib, M.S., Renou, B., Taupin, B., Boukhalfa, A. & Nemouchi, Z., Experimental study of the influence of the equivalence ratio and turbulence on CH4-air premix flame in a Bunsen burner using Laser tomography. Sciences et Technologie, Série B, University Mentouri Constantine No. 22B, pp. 65–78, 2004.
[4] Boulahlib, M.S., Chekired, M. & Boukebbab, S., Turbulence effect on lean premixed methane-air flame in a Bunsen burner. WIT Transactions on Ecology and the Environment, 186, pp. 719–725, 2014. [Crossref]
[5] Miles, P.C. & Gouldin, F.C., Mean reaction rates and flamelet statistics for reaction rate modeling in premixed turbulent flames. Proceeding 24th Symposium on Combustion, The Combustion Institute, pp. 477–484, 1992.
[6] Bray, K.N.C., Champion, M. & Libby, P.A., Mean reaction rates in premixed turbulent flames. Proceeding 22th Symposium (international) on Combustion, The Combustion Institute, pp. 763–769, 1988.
[7] Plessing, T., Kortschik, C., Peters, N., Mansour, M.S. & Cheng, R.K., Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proceeding 28th Symposium on Combustion, Combustion Institute, pp. 359–366, 2000. [Crossref]
[8] Deschamps, B., Etude spatiale et temporelle de la structure dynamique et scalaire des flammes turbulentes de premelange méthane-air, Ph.D thesis, Université d’Orléans, France, 1990.
[9] Fragner, R., Halter, F., Mazellier, N., Chauveau, C. & Gökalp, I., Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proceedings of the Combustion Institute, 35(2), pp. 1527–1535, 2015. [Crossref]
[10] Armstrong, N.W., Planar Flowfield Measurements in Premixed Turbulent Combustion, Cambridge University, 1992.
[11] Driscoll, J.F., Sutkus, D.J., Roberts, W.M.L., Post, M.E. & Goss, L.P., The strain exerted by a vortex on a flame determined from velocity field images. Combustion Science and Technology, 96, pp. 213–229, 1994. [Crossref]
[12] Frank, J.H., Lyons, K.M. & Long, M.B., Measurement of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combustion and Flame, 107, pp. 1–12, 1996. [Crossref]
[13] Kalt, P.A.M. & Bilger, R.W., Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combustion and Flame, 129(4), pp. 401–415, 2002. [Crossref]
[14] Chen, Y.C. & Bilger, R.W., Detailed measurements of local front structures in stagnation-type turbulent premixed flames. Proceeding of the Combustion Institute, 30, pp. 801–808, 2004. [Crossref]
[15] Chekired, M., Nemouchi, Z. & Boulahlib, M.S., Numerical investigation of turbulent premixed methane/air jet flame using peters and williams reduced mechanism. International Journal of Fluid Mechanic Research, 41(1), pp. 31–50, 2014. [Crossref]
[16] Battista, F., Troiani, G. & Picano, F., Fractal scaling of turbulent premixed flame fronts: application to LES. International Journal of Heat and Fluid Flow, 51, pp. 78–87, 2015. [Crossref]
[17] Tamadonfar, P. & Gülder, Ö.L., Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames. Combustion and Flame, 161(12), pp. 3154–3165, 2014. [Crossref]
[18] Tamadonfar, P. & Gülder, Ö.L., Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combustion and Flame, 162(12), pp. 4417–4441, 2015. [Crossref]
[19] Tamadonfar, P. & Guilder, Ö.L., Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Experimental Thermal and Fluid Science, 73, pp. 42–48, 2016. [Crossref]
[20] Levent¸iu, C., Renou, B., Da˘ na˘ ila˘ , S. & Isvoranu, D., Accurate measurements and analysis of the thermal structure of turbulent methane/air premixed flame. Energy Procedia, 85, pp. 329–338, 2016. [Crossref]
[21] Maurice, G., Thiesset, F., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I. & Kourta, A., Scale analysis of the flame front in premixed combustion using proper orthogonal decomposition. Experimental Thermal and Fluid Science, 73, pp. 109– 114, 2016. [Crossref]
[22] Boyer, L., Laser tomograhic method for flame front movement studies. Combustion and Flame, 39, pp. 321–323, 1980. [Crossref]
[23] Bingham, D.C., Gouldin, F.C. & Knaus, D.A., Crossed tomography laser-plane direct measurement of the surface flamelet normal. Proceeding 27th (International) Symposium on Combustion, The Combustion Institute, pp. 77–84, 1998. [Crossref]
[24] Zhang, Y., Chew, T.C. & Bray, K.N.C., Displacement particle image velocimetry, lecture series, Von Karman Institute for Fluid Dynamics, Belgium, 1988.
[25] Borghi, R. & Destriau, M., La combustion et la flamme, edn Technip Paris, pp. 47–48, 1995.
[26] Vagelopoulos, C.M., Egolfopoulos, F.N. & Law, C.K., Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Twenty-Fifth Symposium (International) on Combustion, 25, pp. 1341–1347, 1994. [Crossref]

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Boulahlib, M. S., Chekired, M., Benzitouni, M., & Boukebbab, S. (2016). Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique. Int. J. Comput. Methods Exp. Meas., 4(3), 321-335. https://doi.org/10.2495/CMEM-V4-N3-321-335
M. S. Boulahlib, M. Chekired, M. Benzitouni, and S. Boukebbab, "Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique," Int. J. Comput. Methods Exp. Meas., vol. 4, no. 3, pp. 321-335, 2016. https://doi.org/10.2495/CMEM-V4-N3-321-335
@research-article{Boulahlib2016ExperimentalSO,
title={Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique},
author={M.S. Boulahlib and M. Chekired and M. Benzitouni and S. Boukebbab},
journal={International Journal of Computational Methods and Experimental Measurements},
year={2016},
page={321-335},
doi={https://doi.org/10.2495/CMEM-V4-N3-321-335}
}
M.S. Boulahlib, et al. "Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique." International Journal of Computational Methods and Experimental Measurements, v 4, pp 321-335. doi: https://doi.org/10.2495/CMEM-V4-N3-321-335
M.S. Boulahlib, M. Chekired, M. Benzitouni and S. Boukebbab. "Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique." International Journal of Computational Methods and Experimental Measurements, 4, (2016): 321-335. doi: https://doi.org/10.2495/CMEM-V4-N3-321-335
BOULAHLIB M S, CHEKIRED M, BENZITOUNI M, et al. Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique[J]. International Journal of Computational Methods and Experimental Measurements, 2016, 4(3): 321-335. https://doi.org/10.2495/CMEM-V4-N3-321-335