[1] Ball, R., The fundamental of aircraft combat survivability analysis and design. AIAA, 1985. [Crossref] [2] Deletombe, E., Fabis, J., Dupas, J. & Mortier, J.M., Experimental analysis of 7.62 mm hydrodynamic ram in containers. Journal of Fluids and Structures, 37, pp. 1–21, 2013. [Crossref] [3] Varas, D., Zaera, R. & L´opez-Puente, J., Numerical modelling of the hydrodynamic ram phenomenon. International Journal of Impact Engineering, 36, pp. 363–374, 2009. [Crossref] [4] Bless, S., Fuel tank survivability for hydrodynamic ram induced by high-velocity fragments. Part I experimental result and design summary. Technical Report AFFDLTR-78-184, Part I, University of Dayton Research Institute, 1979.
[5] Stepka, F. & Morse, C., Preliminary investigation of catastrophic fracture of liquid- filled tanks impacted by high velocity particles. Technical Report D-1537, NASA, Cleveland, Ohio, USA, 1963.
[6] Cole, R., Underwater Explosions, Princeton University Press: Princeton, pp. 7–13, 28–45,102–109,114–126,425–426, 1945.
[7] Fourest, T., Laurens, J.M., Deletombe, E., Dupas, J. & Arrigoni, M., Analysis of bubbles dynamics created by hydrodynamic ram in confined geometries using the rayleighplesset equation. International Journal of Impact Engineering, 73, pp. 66–74, 2014. [Crossref] [8] Rayleigh, L., On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine Series 6, 34(200), pp. 94–98, 1917. [Crossref] [9] Plesset, M., The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16, pp. 277–282, 1949.
[10] Fujikawa, S. & Akamatsu, T., Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in liquid. Journal of Fluid Mechanics, 97(03), pp. 481–512, 1980. [Crossref] [11] Obreschkow, D., Kobel, P., Dorsaz, N., de Bosset, A., Nicollier, C. & Farhat, M., Cavitation bubble dynamics inside liquid drops in microgravity. Physical Review Letter, 97, 2006. [Crossref] [12] Fourest, T., Laurens, J.M., Deletombe, E., Dupas, J. & Arrigoni, M., Confined Rayleigh-Plesset equation for hydrodynamic ram analysis in thin-walled containers under bal- listic impacts. Thin−Walled Structures, 86, pp. 67–72, 2015. [Crossref] [13] Grazia De Giorgi, M., Bello, D. & Ficarella, A., Analysis of thermal effects in a cavitating orifice using rayleigh equation and experiments. Journal of Engineering for Gas Turbines and Power, 132(9), 2010. [Crossref] [14] Brennen, C., Cavitation and Bubble Dynamics, Oxford University Press, 1995.
[15] Handbook of aviation fuel properties, Technical Report ADA132106, Coordinating Research Council, 1983.
[16] Shepherd, J., Krok, J. & Lee, J.J., Jet a explosion experiements: Laboratory testing. Technical Report FM97-5, Graduate Aeronautical Laboratories, California Institute of Technology, 1997.
[17] Shepherd, J., Nuyt, C. & Lee, J.J., Flash point and chemical composition of aviation kerosene (jet a). Technical Report FM99-4, Graduate Aeronautical Laboratories, California Institute of Technology, 2000.
[18] Woodrow, J. & Seiber, J.N., The laboratory characterisation of fuel vapor under simulated flight conditions. Technical Report NTSB12-97-SP-0255, Center for Environmen- tal Sciences and Engineering, 1997.
[19] Franc, J., Avellan, F., Belahadji, B., Billard, J., on Marjollet, L.B., Fr´echou, D., Fruman, D., Karimi, A., Kueny, J. & Michel, J., La Cavitation, m´ecanisme, Presse Universitaire de Grenoble: Grenoble, France, pp. 63–95, 1995.
[20] Jensen, J., Tuttle, W., Stewart, R., Brechna, H. & Prodell, A., Brookhaven national laboratory selected cryogenic data notebook, volume I, section I-IX. Technical Report BNL 10200-R, Vol. I, Brookhaven National Laboratory, 198