Javascript is required
[1] Gunshor, R. & Nurmikko, A., Mater. Res. Bull., 20, p. 15, 1995.
[2] Verie, C., J. Cryst. Growth, 1061, pp. 184–185, 1998.
[3] Maruyama, K., Suto, K. & Nishizawa, J.-I., J. Cryst. Growth, 104, pp. 214–215, 2000.
[4] Wang, H.Y., Cao, J., Huang, X.Y. & Huang, J.M., Condens Matter Physics, 15(1), 13705, pp. 1–10, 2012.
[5] Kuskovsky, I.L., Gu, Y., Van der Voort, M., Tian, C., Kim, B., Herman, I.P., Neumark, G.F.,Guo, S.P., Maksimov, O. &Tamargo, M.C., Phys. Stat. Sol. (b), 229(1), p. 239, 2002. doi: %3C239::AID-PSSB239%3E3.0.CO;2-G [Crossref]
[6] Kuskovsky, I., Tian, C., Sudbrack, C., Neumark, G.F., Guo, S.P. & Tamargo, M.C., J. Cryst. Growth, 214, pp. 335–339, 2000. doi: [Crossref]
[7] Buchley, M.R., Peiris, F.C., Maksimov, O., Muňoz, M. & Tamargo, M.C., Appl. Phys. Lett., 81, p. 5156, 2002. doi: [Crossref]
[8] Faurie, J.P., Bousquet, V., Brunet, P. & Tournie, E., J. Cryst. Growth, 184, p. 11, 1998. doi: [Crossref]
[9] Baaziz, H., Charifi, Z., El Haj Hassan, F., Hashemifar, S.J. & Akbarzadeh, H., Phys. Stat. Sol. (b), 243(6), p. 1296, 2006. doi: [Crossref]
[10] Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. & Payne, M.C., J. Phys. Condens. Matter, 14(11), p. 2717, 2002. doi: [Crossref]
[11] Fischer, T.H. & Almlöf, J., J. Phys. Chem., 96, p. 9768, 1992. doi: [Crossref]
[12] Monkhorst, H.J. & Pack, J.D., Phys. Rev. B, 13(12), p. 5188, 1976.
[13] Androulidaki, M., Pelekanos, N.T., Tsagaraki, K., Dimakis, E. & Iliopoulos, E., b3(6), p. 1866, 2006.
[14] Wu, J., Walukiewicz, W., Yu, K.M., Ager, III J.W., Li, S.X., Haller, E.E., Hai, Lu. & Schaff, W.J., Solid State Commun., 127, p. 411, 2003. doi: [Crossref]
[15] Narayana, C., Nesamony, V.J. & Ruoff, A.L., Phys. Rev.. B, 56, p. 14338, 1997. doi: [Crossref]
[16] Okuyama, H., Kishita, Y. & Ishibashi, A., Phys. Rev. B., 57, p. 2257, 1998.
[17] Born, M. & Huang, K., Dynamical Theory of Crystal Lattices, Clarendon: Oxford, 1956.
[18] Zhai, H., Li, X. & Du, J., Mater. Trans., 53(7), p. 1247, 2012.
[19] Matori, K.A., Zaid, M.H.M., Sidek, H.A.A., Halimah, M.K., Wahab, Z.A. & Sabri, M.G.M., Int. J. Phys. Sci., 5(14), p. 2212, 2010.
[20] Ponomareva, A.V., Isaev, E.I., Vekilov, Yu.Kh. & Abrikosov, I.A., Phys. Rev. B, 85, p. 144117, 2012.
[21] Ameri, M., Rached, D., Rabah, M., El Haj Hassan, F., Khenata, R. & Doui-Aici, M., Phys. Stat. Sol. (b), 245(1), p. 106, 2008.
[22] Ashcroft, N.W. & Mermin, N.D., Solid State Physics, Saunders College: Philadelphia, PA, 1976.
[23] Nye, J.F., Physical Properties of Crystals, Clarendon: Oxford, 1957.
[24] Wu, Z.-J., Zhao, E.-J., Xiang, H.-P., Hao, X.-F., Liu, X.-J. & Meng, J., Phys. Rev. B, 76, p. 054115, 2007.
[25] Jing, C., Xiang-Rong, C.,Wei, Z. & Jun, Z., Chin. Phys. Soc., 17(4), p. 1674, 2008.
[26] Bannikov, V.V., Shein, I.R. & Ivanovskii, A.L., Phys. Status Solidi. Rapid Res. Lett., 3, p. 89, 2007.
[27] Frantsevich, I.N., Voronov, F.F. & Bokuta, S.A., Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, ed. I.N. Frantsevich, Naukova Dumka: Kiev, 1983.
[28] Shena, Y. & Zhou, Z., J. Appl. Phys., 103, p. 074113, 2008.
[29] Kleinman, L., Phys. Rev., 128(6), p. 2614, 1962.
[30] Firszt, F., Legowski, S., Meczyiska, H. & Szatkowski, J., Acta Phys. Pol. A, 88(4), 1995.
[31] Chrisman, J.R., Fundamentals of Solid State Physics, John Wiley: New York, pp. 217–218, 1988.
[32] Johnston, I., Keeler, G., Rollins, R. & Spicklemire, S., Solid State Physics Simulations, The Consortium for Upper-Level Physics Software, John Wiley: New York, pp. 45–59, 1996.
[33] Fox, M., Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics, Oxford University Press: Oxford, 2001.
[34] Dadsetani, M. & Pourghazi, A., Phys. Rev. B, 73, p. 195102, 2006.
[35] Wooten, F., Optical Properties of Solids, Academic: New York, 1972.
[36] Herve, J.P.L. & Vandamme, L.K.J., Infrared Phys. Technol., 35, 609, 1994. doi: [Crossref]
[37] Hosseini, S.M., Phys. B Condensed Matter, 403(10-11), p. 1907, 2008. doi: [Crossref]
[38] Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., & Rabah, M., Comput. Mater. Sci., 38(1), pp. 29–38, 2006. doi: [Crossref]
Search

Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law

A. Gultekin1,2,
P. Pashaei1,2,
Z. Khan3,
M.K. Ozturk1,2,
M. Tamer4,
Y. Bas5
1
Gazi University Photonic Application and Research Centre, Turkey
2
Physics Department, Science Faculty, Gazi University, Turkey
3
Fculty of Science & Technology, Bournemouth University, UK
4
Zirve University, Turkey
5
National Boron Research Institute, Turkey
International Journal of Computational Methods and Experimental Measurements
|
Volume 3, Issue 4, 2015
|
Pages 340-349
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

Structural, optical and electronic properties and elastic constants of Be1–xZnxS alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

Keywords: BeZnS, Castep, DFT, Vegard

References
[1] Gunshor, R. & Nurmikko, A., Mater. Res. Bull., 20, p. 15, 1995.
[2] Verie, C., J. Cryst. Growth, 1061, pp. 184–185, 1998.
[3] Maruyama, K., Suto, K. & Nishizawa, J.-I., J. Cryst. Growth, 104, pp. 214–215, 2000.
[4] Wang, H.Y., Cao, J., Huang, X.Y. & Huang, J.M., Condens Matter Physics, 15(1), 13705, pp. 1–10, 2012.
[5] Kuskovsky, I.L., Gu, Y., Van der Voort, M., Tian, C., Kim, B., Herman, I.P., Neumark, G.F.,Guo, S.P., Maksimov, O. &Tamargo, M.C., Phys. Stat. Sol. (b), 229(1), p. 239, 2002. doi: %3C239::AID-PSSB239%3E3.0.CO;2-G [Crossref]
[6] Kuskovsky, I., Tian, C., Sudbrack, C., Neumark, G.F., Guo, S.P. & Tamargo, M.C., J. Cryst. Growth, 214, pp. 335–339, 2000. doi: [Crossref]
[7] Buchley, M.R., Peiris, F.C., Maksimov, O., Muňoz, M. & Tamargo, M.C., Appl. Phys. Lett., 81, p. 5156, 2002. doi: [Crossref]
[8] Faurie, J.P., Bousquet, V., Brunet, P. & Tournie, E., J. Cryst. Growth, 184, p. 11, 1998. doi: [Crossref]
[9] Baaziz, H., Charifi, Z., El Haj Hassan, F., Hashemifar, S.J. & Akbarzadeh, H., Phys. Stat. Sol. (b), 243(6), p. 1296, 2006. doi: [Crossref]
[10] Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. & Payne, M.C., J. Phys. Condens. Matter, 14(11), p. 2717, 2002. doi: [Crossref]
[11] Fischer, T.H. & Almlöf, J., J. Phys. Chem., 96, p. 9768, 1992. doi: [Crossref]
[12] Monkhorst, H.J. & Pack, J.D., Phys. Rev. B, 13(12), p. 5188, 1976.
[13] Androulidaki, M., Pelekanos, N.T., Tsagaraki, K., Dimakis, E. & Iliopoulos, E., b3(6), p. 1866, 2006.
[14] Wu, J., Walukiewicz, W., Yu, K.M., Ager, III J.W., Li, S.X., Haller, E.E., Hai, Lu. & Schaff, W.J., Solid State Commun., 127, p. 411, 2003. doi: [Crossref]
[15] Narayana, C., Nesamony, V.J. & Ruoff, A.L., Phys. Rev.. B, 56, p. 14338, 1997. doi: [Crossref]
[16] Okuyama, H., Kishita, Y. & Ishibashi, A., Phys. Rev. B., 57, p. 2257, 1998.
[17] Born, M. & Huang, K., Dynamical Theory of Crystal Lattices, Clarendon: Oxford, 1956.
[18] Zhai, H., Li, X. & Du, J., Mater. Trans., 53(7), p. 1247, 2012.
[19] Matori, K.A., Zaid, M.H.M., Sidek, H.A.A., Halimah, M.K., Wahab, Z.A. & Sabri, M.G.M., Int. J. Phys. Sci., 5(14), p. 2212, 2010.
[20] Ponomareva, A.V., Isaev, E.I., Vekilov, Yu.Kh. & Abrikosov, I.A., Phys. Rev. B, 85, p. 144117, 2012.
[21] Ameri, M., Rached, D., Rabah, M., El Haj Hassan, F., Khenata, R. & Doui-Aici, M., Phys. Stat. Sol. (b), 245(1), p. 106, 2008.
[22] Ashcroft, N.W. & Mermin, N.D., Solid State Physics, Saunders College: Philadelphia, PA, 1976.
[23] Nye, J.F., Physical Properties of Crystals, Clarendon: Oxford, 1957.
[24] Wu, Z.-J., Zhao, E.-J., Xiang, H.-P., Hao, X.-F., Liu, X.-J. & Meng, J., Phys. Rev. B, 76, p. 054115, 2007.
[25] Jing, C., Xiang-Rong, C.,Wei, Z. & Jun, Z., Chin. Phys. Soc., 17(4), p. 1674, 2008.
[26] Bannikov, V.V., Shein, I.R. & Ivanovskii, A.L., Phys. Status Solidi. Rapid Res. Lett., 3, p. 89, 2007.
[27] Frantsevich, I.N., Voronov, F.F. & Bokuta, S.A., Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, ed. I.N. Frantsevich, Naukova Dumka: Kiev, 1983.
[28] Shena, Y. & Zhou, Z., J. Appl. Phys., 103, p. 074113, 2008.
[29] Kleinman, L., Phys. Rev., 128(6), p. 2614, 1962.
[30] Firszt, F., Legowski, S., Meczyiska, H. & Szatkowski, J., Acta Phys. Pol. A, 88(4), 1995.
[31] Chrisman, J.R., Fundamentals of Solid State Physics, John Wiley: New York, pp. 217–218, 1988.
[32] Johnston, I., Keeler, G., Rollins, R. & Spicklemire, S., Solid State Physics Simulations, The Consortium for Upper-Level Physics Software, John Wiley: New York, pp. 45–59, 1996.
[33] Fox, M., Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics, Oxford University Press: Oxford, 2001.
[34] Dadsetani, M. & Pourghazi, A., Phys. Rev. B, 73, p. 195102, 2006.
[35] Wooten, F., Optical Properties of Solids, Academic: New York, 1972.
[36] Herve, J.P.L. & Vandamme, L.K.J., Infrared Phys. Technol., 35, 609, 1994. doi: [Crossref]
[37] Hosseini, S.M., Phys. B Condensed Matter, 403(10-11), p. 1907, 2008. doi: [Crossref]
[38] Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., & Rabah, M., Comput. Mater. Sci., 38(1), pp. 29–38, 2006. doi: [Crossref]

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Gultekin, A., Pashaei, P., Khan, Z., Ozturk, M., Tamer, M., & Bas, Y. (2015). DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law. Int. J. Comput. Methods Exp. Meas., 3(4), 340-349. https://doi.org/10.2495/CMEM-V3-N4-340-349
A. Gultekin, P. Pashaei, Z. Khan, M. Ozturk, M. Tamer, and Y. Bas, "DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law," Int. J. Comput. Methods Exp. Meas., vol. 3, no. 4, pp. 340-349, 2015. https://doi.org/10.2495/CMEM-V3-N4-340-349
@research-article{Gultekin2015DFTAX,
title={DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law},
author={A. Gultekin and P. Pashaei and Z. Khan and M.K. Ozturk and M. Tamer and Y. Bas},
journal={International Journal of Computational Methods and Experimental Measurements},
year={2015},
page={340-349},
doi={https://doi.org/10.2495/CMEM-V3-N4-340-349}
}
A. Gultekin, et al. "DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law." International Journal of Computational Methods and Experimental Measurements, v 3, pp 340-349. doi: https://doi.org/10.2495/CMEM-V3-N4-340-349
A. Gultekin, P. Pashaei, Z. Khan, M.K. Ozturk, M. Tamer and Y. Bas. "DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law." International Journal of Computational Methods and Experimental Measurements, 3, (2015): 340-349. doi: https://doi.org/10.2495/CMEM-V3-N4-340-349
GULTEKIN A, PASHAEI P, KHAN Z, et al. DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law[J]. International Journal of Computational Methods and Experimental Measurements, 2015, 3(4): 340-349. https://doi.org/10.2495/CMEM-V3-N4-340-349