Javascript is required
[1] Chen, Y.-H., Wang, Y.-Y. & Wan, C.-C., Microstructural characteristics of immersion tin coatings on copper circuitries in circuit boards. Surface and Coatings Technology, 202, pp. 417–424, 2007. doi: [Crossref]
[2] Tay, S.L., Haseeb, A.S.M.A., Johan, M. R., Munroe, P. R. & Quadir, M.Z., Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn–3.8Ag–0.7Cu lead-free solder and copper substrate. Intermetallics, 33, pp. 8–15, 2013. doi: [Crossref]
[3] Haseeb, A.S.M.A. & Leng, T.S., Effects of Co nanoparticle addition to Sn–3.8Ag–0.7Cu solder on interfacial structure after reflow and ageing. Intermetallics, 19, pp. 707–712, 2011. doi: [Crossref]
[4] Huang, M.-K., Wu, P.-L. & Lee, C., Effects of different printed circuit board surface finishes on the formation and growth of intermetallics at thermomechanically fatigued small outline J leads/Sn–Pb interfaces. Materials Chemistry and Physics, 85, pp. 63–67, 2004. doi: [Crossref]
[5] Yli-Pentti, A., 4.11 – electroplating and electroless plating. Comprehensive Materials Processing, eds. S. Hashmi, G. F. Batalha, C. J. V. Tyne & B. Yilbas, Elsevier: Oxford, pp. 277–306, 2014. doi: [Crossref]
[6] Arshad, M.K.M., Ahmad, I., Jalar, A. & Omar, G., The surface characteristics of under bump metallurgy (UBM) in electroless nickel immersion gold (ENIG) deposition. Microelectronics Reliability, 46, pp. 367–379, 2006. doi: [Crossref]
[7] Aisha, I.S.R., Ourdjini, A., Hanim, M.A. & Azlina, O.S., Effect of reflow profile on intermetallic compound formation. IOP Conference Series: Materials Science and Engi- neering, 46, p. 012037, 2013. doi: [Crossref]
[8] Zeng, K. & Tu, K.N., Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science and Engineering: R: Reports, 38, pp. 55–105, 2002. doi: [Crossref]
[9] Farzaneh, A., Mohammadi, M., Ehteshamzadeh, M. & Mohammadi, F., Electro- chemical and structural properties of electroless Ni–P–SiC nanocomposite coatings. Applied Surface Science, 276, pp. 697–704, 2013. doi: [Crossref]
[10] Rahmat, M.A., Oskouei, R.H., Ibrahim, R.N. & Singh Raman, R.K., The effect of elec- troless Ni–P coatings on the fatigue life of Al 7075-T6 fastener holes with symmetrical slits. International Journal of Fatigue, 52, pp. 30–38, 2013. doi: [Crossref]
[11] Ramesh, C.S., Keshavamurthy, R., Channabasappa, B.H. & Ahmed, A., Microstructure and mechanical properties of Ni–P-coated Si3N4 reinforced Al6061 composites. Materials Science and Engineering: A, 502, pp. 99–106, 2009. doi: [Crossref]
[12] Alam, M.O., Chan, Y.C. & Hung, K.C., Reliability study of the electroless Ni–P layer against solder alloy, Microelectronics Reliability, 42, pp. 1065–1073, 2002. doi: http:// dx.doi.org/10.1016/S0026-2714(02)00068-9
[13] Kim, J.-M., Jeong, M.-H., Yoo, S., Lee, C.-W. & Park, Y.-B., Effects of surface finishes and loading speeds on shear strength of Sn–3.0Ag–0.5Cu solder joints. Microelectronic Engineering, 89, pp. 55–57, 2012. doi: [Crossref]
[14] Yoon, J.-W., Park, J.-H., Shur, C.-C. & Jung, S.-B., Characteristic evaluation of electroless nickel–phosphorus deposits with different phosphorus contents. Micro- electronic Engineering, 84, pp. 2552–2557, 2007. doi: [Crossref]
[15] Laurila, T. & Vuorinen, V., Combined thermodynamic-kinetic analysis of the inter- facial reactions between Ni metallization and various lead-free solders. Materials, 2, pp. 1796–1834, 2009. doi: [Crossref]
[16] Saliza Azlina, O., Ourdjini, A. & Siti Rabiatull Aisha, I., Effect of nickel doping on interfacial reaction between lead-free solder and Ni–P substrate. Advanced Materi- als Research, 488–489, pp. 1375–1379, 2012. doi: [Crossref]
[17] Chavali, S., Singh, Y., Subbarayan, G., Bansal, A. & Ahmad, M., Effect of pad surface finish and reflow cooling rate on the microstructure and the mechanical behavior of SnAgCu solder alloys. Microelectronics Reliability, 53, pp. 892–898, 2013. doi: http:// dx.doi.org/10.1016/j.microrel.2013.02.006
Search

Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method

Siti Rabiatull Aisha Idris1,
Ali Ourdjini2,
Azmah Hanim Mohamad Ariff3,
Saliza Azlina Osman4
1
Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Malaysia
2
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Malaysia
3
Department of Mechanical and Manufacturing, Univerisiti Putra Malaysia, Malaysia
4
Faculty of Mechanical and Manufacturing, Universiti Tun Hussein Onn Malaysia, Malaysia
International Journal of Computational Methods and Experimental Measurements
|
Volume 3, Issue 4, 2015
|
Pages 329-339
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

In this paper, the nickel–phosphorus (Ni–P) diffusion barrier layer between Sn–4Ag–0.5Cu solder alloy and copper-printed circuit board was developed. The electroless plating technique was used to develop Ni–P diffusion barrier layer with different percentage of phosphorus content, which are 1–5 wt% (low), 5–8 wt% (medium) and above 8 wt% (high). The results reveal that the high phosphorus content in nickel layer acts as a good diffusion barrier for Sn–4Ag–0.5Cu since it can suppress the intermetallic compound formation. This is because in higher phosphorus content, the grain boundaries were found to be eliminated. Hence, resulted in thinner intermetallic compound thickness.

Keywords: diffusion barrier layer, intermetallic compound, nickel–phosphorus

References
[1] Chen, Y.-H., Wang, Y.-Y. & Wan, C.-C., Microstructural characteristics of immersion tin coatings on copper circuitries in circuit boards. Surface and Coatings Technology, 202, pp. 417–424, 2007. doi: [Crossref]
[2] Tay, S.L., Haseeb, A.S.M.A., Johan, M. R., Munroe, P. R. & Quadir, M.Z., Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn–3.8Ag–0.7Cu lead-free solder and copper substrate. Intermetallics, 33, pp. 8–15, 2013. doi: [Crossref]
[3] Haseeb, A.S.M.A. & Leng, T.S., Effects of Co nanoparticle addition to Sn–3.8Ag–0.7Cu solder on interfacial structure after reflow and ageing. Intermetallics, 19, pp. 707–712, 2011. doi: [Crossref]
[4] Huang, M.-K., Wu, P.-L. & Lee, C., Effects of different printed circuit board surface finishes on the formation and growth of intermetallics at thermomechanically fatigued small outline J leads/Sn–Pb interfaces. Materials Chemistry and Physics, 85, pp. 63–67, 2004. doi: [Crossref]
[5] Yli-Pentti, A., 4.11 – electroplating and electroless plating. Comprehensive Materials Processing, eds. S. Hashmi, G. F. Batalha, C. J. V. Tyne & B. Yilbas, Elsevier: Oxford, pp. 277–306, 2014. doi: [Crossref]
[6] Arshad, M.K.M., Ahmad, I., Jalar, A. & Omar, G., The surface characteristics of under bump metallurgy (UBM) in electroless nickel immersion gold (ENIG) deposition. Microelectronics Reliability, 46, pp. 367–379, 2006. doi: [Crossref]
[7] Aisha, I.S.R., Ourdjini, A., Hanim, M.A. & Azlina, O.S., Effect of reflow profile on intermetallic compound formation. IOP Conference Series: Materials Science and Engi- neering, 46, p. 012037, 2013. doi: [Crossref]
[8] Zeng, K. & Tu, K.N., Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science and Engineering: R: Reports, 38, pp. 55–105, 2002. doi: [Crossref]
[9] Farzaneh, A., Mohammadi, M., Ehteshamzadeh, M. & Mohammadi, F., Electro- chemical and structural properties of electroless Ni–P–SiC nanocomposite coatings. Applied Surface Science, 276, pp. 697–704, 2013. doi: [Crossref]
[10] Rahmat, M.A., Oskouei, R.H., Ibrahim, R.N. & Singh Raman, R.K., The effect of elec- troless Ni–P coatings on the fatigue life of Al 7075-T6 fastener holes with symmetrical slits. International Journal of Fatigue, 52, pp. 30–38, 2013. doi: [Crossref]
[11] Ramesh, C.S., Keshavamurthy, R., Channabasappa, B.H. & Ahmed, A., Microstructure and mechanical properties of Ni–P-coated Si3N4 reinforced Al6061 composites. Materials Science and Engineering: A, 502, pp. 99–106, 2009. doi: [Crossref]
[12] Alam, M.O., Chan, Y.C. & Hung, K.C., Reliability study of the electroless Ni–P layer against solder alloy, Microelectronics Reliability, 42, pp. 1065–1073, 2002. doi: http:// dx.doi.org/10.1016/S0026-2714(02)00068-9
[13] Kim, J.-M., Jeong, M.-H., Yoo, S., Lee, C.-W. & Park, Y.-B., Effects of surface finishes and loading speeds on shear strength of Sn–3.0Ag–0.5Cu solder joints. Microelectronic Engineering, 89, pp. 55–57, 2012. doi: [Crossref]
[14] Yoon, J.-W., Park, J.-H., Shur, C.-C. & Jung, S.-B., Characteristic evaluation of electroless nickel–phosphorus deposits with different phosphorus contents. Micro- electronic Engineering, 84, pp. 2552–2557, 2007. doi: [Crossref]
[15] Laurila, T. & Vuorinen, V., Combined thermodynamic-kinetic analysis of the inter- facial reactions between Ni metallization and various lead-free solders. Materials, 2, pp. 1796–1834, 2009. doi: [Crossref]
[16] Saliza Azlina, O., Ourdjini, A. & Siti Rabiatull Aisha, I., Effect of nickel doping on interfacial reaction between lead-free solder and Ni–P substrate. Advanced Materi- als Research, 488–489, pp. 1375–1379, 2012. doi: [Crossref]
[17] Chavali, S., Singh, Y., Subbarayan, G., Bansal, A. & Ahmad, M., Effect of pad surface finish and reflow cooling rate on the microstructure and the mechanical behavior of SnAgCu solder alloys. Microelectronics Reliability, 53, pp. 892–898, 2013. doi: http:// dx.doi.org/10.1016/j.microrel.2013.02.006

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Idris, S. R. A., Ourdjini, A., Ariff, A. H. M., & Osman, S. A. (2015). Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method. Int. J. Comput. Methods Exp. Meas., 3(4), 329-339. https://doi.org/10.2495/CMEM-V3-N4-329-339
S. R. A. Idris, A. Ourdjini, A. H. M. Ariff, and S. A. Osman, "Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method," Int. J. Comput. Methods Exp. Meas., vol. 3, no. 4, pp. 329-339, 2015. https://doi.org/10.2495/CMEM-V3-N4-329-339
@research-article{Idris2015DevelopmentOD,
title={Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method},
author={Siti Rabiatull Aisha Idris and Ali Ourdjini and Azmah Hanim Mohamad Ariff and Saliza Azlina Osman},
journal={International Journal of Computational Methods and Experimental Measurements},
year={2015},
page={329-339},
doi={https://doi.org/10.2495/CMEM-V3-N4-329-339}
}
Siti Rabiatull Aisha Idris, et al. "Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method." International Journal of Computational Methods and Experimental Measurements, v 3, pp 329-339. doi: https://doi.org/10.2495/CMEM-V3-N4-329-339
Siti Rabiatull Aisha Idris, Ali Ourdjini, Azmah Hanim Mohamad Ariff and Saliza Azlina Osman. "Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method." International Journal of Computational Methods and Experimental Measurements, 3, (2015): 329-339. doi: https://doi.org/10.2495/CMEM-V3-N4-329-339
IDRIS S R A, OURDJINI A, ARIFF A H M, et al. Development of Diffusion Barrier Layer on Copper-Printed Circuit Board Using Electroless Plating Method[J]. International Journal of Computational Methods and Experimental Measurements, 2015, 3(4): 329-339. https://doi.org/10.2495/CMEM-V3-N4-329-339