[1] Johnson, J. N., Dynamic fracture and spallation in ductile solids. Journal of Applied Physics, 52(4), pp. 2812–2825, 1981. doi: [Crossref] [2] Curran D. R., Seaman, L., & Shockey, D. A. Dynamic failure of solids. Physics Reports, 147(5–6), pp. 253–388, 1987. doi: [Crossref] [3] Molinari, A. & Wright, T. W., A physical model for nucleation and early growth of voids in ductile materials under dynamic loading. Journal of the Mechanics and Physics of Solids, 53(7), pp. 1476–1504, 2005. doi: [Crossref] [4] Yu, Y., Chen, D., Tan, H., Wang, H., Xie, S. & Zhang, M., Spall investigations for LY12 Al using triangular waves. International Journal of Impact Engineering, 34(3), pp. 395–404, 2007. doi: [Crossref] [5] Kanel, G. I., Spall fracture: methodological aspects, mechanisms, and governing factors. International Journal of Fracture, 163(1–2), pp. 173–191, 2010. doi: http:// dx.doi.org/10.1007/s10704-009-9438-0
[6] Escobedo, J. P., Dennis-Koller, D., Cerreta, E. K., Patterson, B. M., Bronkhorst, C. A., Hansen, B. L. & Lebensohn, R. A., Effects of grain size and boundary structure on the dynamic tensile response of copper. Journal of Applied Physics, 110(3), 033513, 2011. doi: [Crossref] [7] Bat’kov, Y. V., Ignatova, O. N., Kondrokhina, I. N., Malyshev, A. N., Nadezhin, S. S., Podurets, A. M. & and Preston, D. L., Specific features of the damage nucleation stage under severe loading of copper. Physics of the Solid State, 53(4), pp. 768–772, 2011. doi: [Crossref] [8] Richter, H., Simulating transient effects of pulsed beams on beam intercepting devices, Doctoral dissertation, CERN, 2011.
[9] Hallquist, J. O., LS-DYNA Keyword User’s Manual, Version 971, 1, Livermore Software and Technology Corporation: Livermore, CA, 2008.
[10] Hertel, Jr., E. S., CTH: a software family for multi-dimensional shock physics analysis, Shock Waves @ Marseille I, Springer: Berlin, Heidelberg, pp. 377–382, 1995.
[11] Hixson, R. S., Private communication, 9 September 2013, National Security Technolo- gies, LLC: USA.
[12] Barker, L. M. & Hollenbach, R. E., Shock-wave studies of PMMA, fused silica, and sapphire. Journal of Applied Physics, 41(10), pp. 4208–4226, 1970.
[13] Somasundaram, D., Trabia, M., O’Toole, B., & Hixson, R., Variables affecting smoothed particle hydrodynamics simulation of high velocity flyer plate impact experiments. WIT Transactions on Structures Under Shock and Impact XIII, WIT Press, ISSN 174-4498, 2014.
[14] Hixson, R. S., Gray, G. T., Rigg, P. A., Addessio, L. B., & Yablinsky, C. A., Dynamic damage investigations using triangular waves, Shock Compression of Condensed Matter – 2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 706 (1), 2004.
[15] Marsh, S. P., LANL Shock Hugoniot Data, University of California Press: Oakland, CA 1980.
[16] Johnson, G. R. & Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperature, Proc. of 7th International Symposium on Ballistics, The Hague, The Netherlands, pp. 541–547, 1983.
[17] Grady, D., The spall strength of condensed matter. Journal of the Mechanics and Physics of Solids, 36(3), pp. 353–384, 1988. doi: [Crossref] [18] Mukherjee, D., Ray, A., Sur, A., Joshi, K. & Gupta, S., Shock induced spall fracture in polycrystalline copper. AIP Conference Proceedings, 1591, pp. 608, 2014. doi: http:// dx.doi.org/10.1063/1.4872691
[19] Sapphire Properties, http://www.roditi.com/SingleCrystal/Sapphire/Properties.html