[1] Leuchs, M., Chemical vapour infiltration processes for ceramic matrix composites: manufacturing properties (Chapter 9), Ceramic matrix composites, ed. W. Krenkel, Wiley-Weinheim, Germany, pp. 141–164, 2008.
[2] Golecki, I., Rapid vapour phase densification of refractory composites. Materials Science and Engineering R, 37, pp. 118–124, 1997. doi: http://dx.doi.org/10.1016/ s0927-796x(97)00003-x
[3] Lamon, J., Chemical vapour infiltrated SiC/SiC composites (CVI SiC/SiC), Handbook of ceramic composites , ed. N. Bansal, Kluwer Academic Publishers, Boston, pp. 55–76, 2005. doi: [Crossref] [4] Delhaes, P., Review – chemical vapour deposition and infiltration processes of carbon materials, Carbon, 40(5), pp. 641–657, 2002. doi: [Crossref] [5] Amirthan, G., Udayakumar, A., Bhanu, P.V.V. & Balasubramanian, M., Properties of Si/ SiC ceramic composite subjected to chemical vapour infiltration. Ceramic Internation- al, 35(7), pp. 2601–2607, 2009. doi: [Crossref] [6] Naslain, R.R., Langlais, F., & Fedou, R., The CVI – processing of ceramic matrix com- posites. Journal of Physics, 50(C5), pp. 191–207, 1989. doi: http://dx.doi.org/10.1051/ jphyscol:1989526
[7] Naslain, R.R., Material design and processing of high temperature ceramic matrix com- posites: state of the art and future trends, Advance Composite Materials, 8(1), pp. 3–16, 1999. doi: [Crossref] [8] Buckley J.D., Carbon–carbon, an overview. American Ceramic Society Bulletin, 67(2), pp. 364–368, 1988.
[9] Manocha, L.M. & Pande, R., Growth of carbon nanotubes on silicon carbide fabric as reinforcement for SiC/C composites. Journal of Nanoscience and Nanotechnology, 10(6), pp. 3822–3827, 2010. doi: [Crossref] [10] Sauder, C., Brusson, A. & Lamon, J, Mechanical properties of Hi-NicalonS and SA3 fibre reinforced SiC/SiC minicomposites. International Journal of Applied Ceramic Technology, 7(3), pp. 291–303, 2010. doi: ch9 [Crossref] [11] Yan, Z.Q., Chen, F., Xiong, X., Xiao, P., Zhang, H.B. & Huang, B.Y., Oxidation behav- iour of CVI, MSI and CVI+MSI C/SiC composites. Transactions of Nonferrous Met- als Society of China, 20(4), pp. 590–596, 2010. doi: 6326(09)60183-7 [Crossref] [12] Petrak, D.R., Ceramic matrices, Composites, ASM Handbook, ed. D.B. Miracle & S.L. Donaldson, Vol. 21, ASM International, USA, pp. 160–163, 2001.
[13] Bang, K.-H., Chung, G.-Y. & Koo, H.-H., Preparation of C/C composites by the chemi- cal vapours infiltration (CVI) of propane pyrolysis. Korean Journal of Chemical Engi- neering, 28(1), pp. 272–278 2011. doi: [Crossref] [14] Guan, K., Laifei, C., Qingfeng, Z., Hui, L., Shanhua, L., Jianping, L. & Litong, Z., Prediction of permeability for chemical vapour infiltration. Journal of the American Ce- ramic Society, 96(8), pp. 2445–2453, 2010. doi: [Crossref] [15] Pedersen, H., Leone, S., Henry, A., Beyer, F.C., Darakchieva, V. & Janzén, E., Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosi- lane (MTS). Journal of Crystal Growth, 307(2), pp. 334–340, 2007. doi: http://dx.doi. org/10.1016/j.jcrysgro.2007.07.002
[16] Schnack, E., Wang, F.W. & Li, A.J., Phase-field model for the chemical vapour infiltra- tion of silicon carbide. Journal of the Electrochemical Society, 157(7), pp. 377–386, 2010. doi: [Crossref] [17] Kulik, V.I., Kulik, A.V., Ramm, M.S. & Makarov, Y.N., Modelling of SiC–matrix com- posite formation by isothermal chemical vapour infiltration. Journal of Crystal Growth, 266(1-3), pp. 333–339, 2004. doi: [Crossref] [18] Zhu, Y., Schnack, E. & Li, A.J., Multiphase field modelling chemical vapour infiltration of SiC/SiC composite. Proceedings in Applied Mathematics and Mechanics, 11(1), pp. 453–454, 2011. doi: [Crossref] [19] Zhu, Y. & Schnack, E., Modelling manufacture process of light weight SiC/SiC com- posites. Proceedings in International Symposium on Advances in Applied Mechanics and Modern Information Technology, MIT11, pp. 283–287, 2011.
[20] Barbato, A. & Cavallotti, C., Challenges of introducing quantitative elementary reac- tions in multiscale models of thin film deposition. Physica Status Solidi (B), 247(9), pp. 2127–2146, 2010. doi: [Crossref] [21] Kulik, V.I., Kulik, A.V., Ramm, M.S., Nilov, A.S. & Bogdanov, M.V., Two-dimensional model of conjugate heat and mass transport in the isothermal chemical vapour infil- tration of 3D preform by SiC matrix. Silicon Carbide and Related Materials, 483, pp. 245–250, 2005. doi: [Crossref] [22] Vignoles, G.L., Modelling of the CVI processes. Advances in Science and Technology, 50, pp. 97–106, 2006. doi: [Crossref] [23] Zhu, Y., Schnack, E. & Iancu, G., Modelling chemical vapour infiltration of SiC com- posites. Proceedings in TMCE 2012, 2, pp. 787–796, 2012.
[24] Zhang, W.G. & Hüttinger, G.K., Chemical vapour deposition of SiC from ethyltrichlo- rosilane, part-II: composition of the gas phase and the deposit. Advanced Materials of CVD, 7, pp. 173–181, 2001.
[25] Allendorf, M.D. & Melius, C.F., Theoretical study of thermochemistry of molecules in the silicon–carbon–chlorine–hydrogen system. Journal of Physical Chemistry, 97, pp. 720–728, 1993. doi: [Crossref] [26] Fitzer, E. & Kehr, D., Carbon, carbide and silicide coatings. Thin Solid Films, 39, pp. 55–57, 1976.
[27] Schnack, E., 3D simulation of the manufacturing process for composites with a SiC- matrix, Final Report-project DFG Schn245/31, Karlsruhe Institute of Technology (KIT), Germany.
[28] Chase, M.W., Nist-janaf thermochemical tables. Journal of Physical Chemistry Data,9, pp. 1–1951, 1998.
[29] Gurvich, L.V., Veyts, I.V. & Alcock, C.B., Thermodynamic properties of individual sub- stances, Hemisphere Publishing, USA, 1989.
[30] Zhu, Y. & Schnack, E., Numerical modelling chemical vapour infiltration of SiC composites. Journal of Chemistry, 2013, pp. 1–11, 2013. doi: http://dx.doi.org/ 10.1155/2013/836187
[31] Eggleston, J.J., McFaddenand, G.B. &. Voorhees, P.W., A phase-field model for highly anisotropic interfacial energy. Physica D, 150, pp. 91–103, 2001. doi: http://dx.doi. org/10.1016/s0167-2789(00)00222-0
[32] Schnack, E., Wang, F.W., Langhoff, T.-A. & Li, A. J., Modelling and simulation of composites in the design process, 7th International Symposium on Tools and Methods in Competitive Engineering, 2008.
[33] Wang, F.W., Schnack, E. & Zhu, Y., Discontinuous Galerkin solution of phase-field model in isothermal chemical vapour infiltration of SiC. Journal of Engineering Math- ematics, 78(1), pp. 261–274, 2013. doi: [Crossref] [34] Zhu, Y., Schnack, E. & Iancu, G., Microstructure simulation in isothermal chemical vapour infiltration of SiC composites. International Journal of Information Technol- ogy and Management, 13(2-3), pp. 202–215, 2013. doi: http://dx.doi.org/10.1504/ ijitm.2014.060303
[35] Beckermann, C., Dipers, H.J., Steinbach, I., Karma, A. & Tong, X., Modelling melt convection in phase-field simulations of solidification. Journal of Computation Physics, 154, pp. 468–159, 1999. doi: [Crossref] [36] Beck, T.L., Real-space mesh techniques in density-functional theory. Reviews of Modern Physics, 72(4), pp. 1041–1080, 2000. doi: phys.72.1041 [Crossref] [37] Benjeddou, A., Advances in piezoelectric finite element modelling of adaptive struc- tural elements: a survey. Computers & Structures, 76(1-3), pp. 347–363, 2000. doi: [Crossref] [38] Liu, G.R. & Gu, Y.T., A point interpolation method for two-dimensional solids. Inter- national Journal for Numerical Methods in Engineering, 50(4), pp. 937–951, 2001. doi: <937::aid-nme62>3.0.co;2-x [Crossref] [39] Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R. & Ortiz, M., An adap- tive finite element approach to atomic-scale mechanics – the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 47(3), pp. 611–642, 1999. doi: http:// dx.doi.org/10.1016/s0022-5096(98)00051-9
[40] Strouboulis, T., Copps, K. & Babuska, I., The generalized finite element method. Com- puter Methods in Applied Mechanics and Engineering, 190(32-33), pp. 4081–4193, 2001.
[41] Gong, J., Phase-field modelling ICVI process of SiC with h-adaptive FEM, Internship Report, Karlsruhe Institute of Technology (KIT), Germany, 2010.
[42] Lazzeri, A., Composites processing methods (Chapter 9). CVI Processing of Ceramic Matrix Composites, eds. N.P. Bansal & A.R. Boccaccini, John Wiley & Sons, Inc., New York, NY, pp. 313–339, 2012.
[43] Papasouliotis, G.D. & Sotirchos, S.V., Hydrogen chloride effects on the CVD of sili- con carbide from methyltrichlorosilane. Chemical Vapour Deposition, 4–6, pp. 235– 246, 1998. doi: <235::aid- cvde235>3.0.co;2-r [Crossref] [44] Sotirchos, S.V. & Papasouliotis G.D., Experimental study of atmospheric pressure chemical vapour deposition of silicon carbide from methyltrichlorosilane. Jour- nal of Materials Research, 14, pp. 3397–3409, 1999. doi: http://dx.doi.org/10.1557/ jmr.1999.0460