[1] Lillesand, T.M., Kiefer, R.W. & Chipman, J.W., Remote Sensing and Image Interpretation, 5th edn., John Wiley & Sons: New York, NY, 2004.
[2] Dobson, M.C., Ulaby, F.T. & Pierce, L.E., Land cover classifi cation and estimation of terrain attributes using synthetic aperture radar. Remote Sensing of Environment, 51, pp. 199–214, 1995. doi: [Crossref] [3] Ulaby, F.T., SAR biophysical retrievals: “lessons learned and challenges to overcome.” Proceedings of the 2nd International Workshop on Retrieval of Bio- and Geo-physical Parameters from SAR Data for Land Applications, 21–23 October, 1998.
[4] Ezeoke, M. & Tong, K., Synthetic aperture radar signature for oil sands exploration. Proceedings of IEEE UKSim-AMSS 6th European Modeling Symposium (EMS 2012), Valetta, Malta, pp. 419–424, 14–16 November, 2012. doi: [Crossref] [5] Schaber, G.G., SAR studies in the Yuma Desert, Arizona: sand penetration, geology and the detection of military ordnance debris. Remote Sensing of the Environment, 67, pp. 320–347, 1999. doi: [Crossref] [6] Ezeoke, M. & Tong, K., Modeling the electromagnetic refl ectivity of Agbabu oil sand from hyperspectral refl ectance spectra and dielectric properties at L-, C- and Xband frequencies. IEEE 5th International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013), Madrid, Spain, 5–8 June, 2013. doi: [Crossref] [7] Oh, Y., Sarabandi, K. & Ulaby, F.T., Empirical model & inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience & Remote Sensing, 30(2), pp. 370–381, 1992. doi: [Crossref] [8] Ezeoke, M., Tong, K. & Shi, S., Modeling synthetic aperture radar signature of agbabu oil sand for petroleum exploration, Energy Production and Management in the 21st Century the Quest for Sustainable Energy, Vol. 2, Eds. C.A. Brebbia, E.R. Magaril and M.Y. Khodorovsky, WIT Transactions on Ecology and the Environment, 190, pp. 1284–1295, 2014. doi: [Crossref] [9] Beckmann, P. & Spizzichino, A., The Scattering of Electromagnetic Waves from Rough Surfaces, Macmillan: New York, NY, 1963.
[10] Torrance, K. & Sparrow, E., Off-specular peaks in the directional distribution of refl ected thermal radiation. ASME Journal of Heat Transfer, 88, pp. 223–230, 1966. doi: [Crossref] [11] Cloutis, E.A., Gaffey, M.J. & Moslow, T.F., Characterization of minerals in oil sands by refl ectance spectroscopy. Fuel, 74(6), pp. 874–879, 1995. doi: [Crossref] [12] Xu, D.Q., Ni, G.Q., Jiang, L.L., Shen, Y.T., Li, T., Ge, S.L. & Shu, X.B., Exploring for natural gas using refl ectance spectra of surface soils. Advances in Space Research, 41, pp. 1800–1817, 2008. doi: [Crossref] [13] Yoon, S., Son, J., Lee, W., Lee, H.Y. & Lee, C.W., Prediction of bitumen content in oil sand based on FT-IR measurement. Journal of Industrial and Engineering Chemistry, 15, pp. 370–374, 2009. doi: [Crossref] [14] Wei, B., Simsek, E., Yu, C. & Liu, Q.H., Three-dimensional electromagnetic nonlinear inversion in layered media by hybrid diagonal tensor approximation: stabilized bi-conjugate gradient fast Fourier transform method. Journal of Waves in Random and Complex Media, 17, pp. 129–147, 2007. doi: [Crossref] [15] Ward, S.H. & Hohmann, G.W., Electromagnetic theory for geophysical applications (Chapter 4). Electromagnetic Methods in Applied Geophysics: Volume 1, Theory, ed. M.N. Nabighian, Society of Exploration Geophysists: Tulsa, OK, pp. 130–311, 1988.
[16] Ulaby, F.T., Moore, R.K. & Fung, A.K., Microwave Remote Sensing Active and Passive Vol. 2, Radar Remote Sensing and Surface Scattering and Emission Theory, AddisonWesley: Reading, MA, 1982. doi: [Crossref] [17] CST Microwave Studio: HF design and analysis tutorial. CST-Computer Simulation Technology, 2012.
[18] Clemens, M. & Weiland, T., Discrete electromagnetism with the fi nite integration technique. Progress in Electromagnetics Research, 32, pp. 65–87, 2001. doi: [Crossref] [19] Weiland, T., Time domain electromagnetic fi eld computation with fi nite difference methods. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 9, pp. 295–319, 1996. doi: %3C295::aid-jnm240%3E3.0.co;2-8 [Crossref] [20] Graton, L.C. & Fraser, H.J., Systematic packing of spheres with particular relation to porosity and permeability. Journal of Geology, 43, pp. 785–909, 1935. doi: [Crossref] [21] Bukka, K., Miller, J.D. & Oblad, A.G., Fractionation and characterization of Utah tarsand bitumen’s: infl uence of chemical composition on bitumen viscosity. Energy & Fuels, 5(2), pp. 333–340, 1991. doi: [Crossref] [22] Willey, R.R., Emittance and refl ectance of various materials in the 2 to 20 micrometer spectral region. SPIE, 643, pp. 93–100, 1986. doi: [Crossref] [23] Peake, W.H. & Oliver, T.L., The response of terrestrial surfaces at microwave frequencies, Technical Report AFAL-TR-70-301, Ohio State University, Electro-Science Laboratory, Columbus, OH, 279 pp, 1971.
[24] Erdogan, L., Akyel, C. & Ghannouchi, F.M., Dielectric properties of oil sands at 2.45GHz with TE1,0,11 mode determined by a rectangular cavity resonator. Journal of Microwave Power and Electromagnetic Energy, 45(1), pp. 15–23, 2007.