[1] Williams, G.D. & Williamson, E.B., Response of reinforced concrete bridge columns subjected to blast loads. Journal of Structural Engineering, 137(9), pp. 903–913, 2011. doi: [Crossref] [2] Winget, D.G., Marchand, K.A. & Williamson, E.B., Analysis and design of critical bridges subjected to blast loads. Journal of Structural Engineering, 131(8), pp. 1243–1255, 2005. doi: [Crossref] [3] ASCE, The Oklahoma city building: improving building response through multi-hazard mitigation. Report for FEMA. Report no. 277, New York, NY, 1996.
[4] Malvar, L.J., Crawford, J.E. & Morrill, K.B., Use of composites to resist blast. Journal of Composites for Construction, 11(6), pp. 601–610, 2007. doi: [Crossref] [5] Dumas, P., Structural retrofi tting using fi ber reinforced polymers. Ms Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2012.
[6] Mirmiran, A. & Shahawy, M., Composite pile: a successful drive. Concrete International, 25(3), pp. 89–94, 2003.
[7] Zhu, Z., Joint construction and seismic performance of concrete-fi lled fi ber reinforced polymer tubes. PhD Dissertation, North Carolina State University, Raleigh, NC, 2004.
[8] Elsanadedy, H., Almusallam, T., Abbas, H., Al-Salloum, Y., Alsayed, S. & Al-Haddad, M., Effect of blast loading on CFRP retrofi tted RC columns. IMPLAST 2010 Conference, Providence, Rhode Island, October, pp. 12–14, 2010. doi: [Crossref] [9] Crawford, J.E., Malvar, L., Morrill, K.B. & Ferritto, J.M., Composite retrofi ts to increase the blast resistance of reinforced concrete buildings. 10th International Symposium Interaction of the Effects of Munitions with Structures, P-01-13, San Diego, CA, 2001.
[10] Williamson, E.B. & Winget, D.G., Risk management and design of critical bridges for terrorist attacks. Journal of Bridge Engineering, 10(1), pp. 96–106, 2005. doi: [Crossref] [11] Hamed, E. & Rabinovitch, O., Dynamic behavior of reinforced concrete beams strengthened with composite materials. Journal of Composites for Construction, 9(5), pp. 429–440, 2005. doi: [Crossref] [12] Mosalam, K.M. & Mosallam, A.S., Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofi tted with CFRP composites. Composites Part B: Engineering, 32(8), pp. 623–636, 2001. doi: [Crossref] [13] Shi, Y., Li, Z. & Hao, H., A new method for progressive collapse analysis of RC frames under blast loading. Engineering Structures, 32(6), pp. 1691–1703, 2010. doi: [Crossref] [14] Nam, J., Kim, H., Kim, S., Kim, J.J. & Byun, K.J., Analytical study of fi nite element models for FRP retrofi tted concrete structure under blast loads. International Journal of Damage Mechanics, 18(5), pp. 461–490, 2009. doi: [Crossref] [15] Ngo, T., Mendis, P., Gupta, A. & Ramsay, J., Blast loading and blast effects on structures – an overview. Electronic Journal of Structural Engineering, 7, pp. 76–91.2007.
[16] Bentz, E.C. & Collins, M.P., Response 2000. Software Program for Load-Deformation Response of Reinforced Concrete Section, 2000, available at: http://www.ecf.utoronto.ca/~bentz/news.shtml.
[17] ANSYS, Inc., ANSYS Version 8.0, ANSYS, Inc.: Canonsburg, PA, 2003. doi: [Crossref] [18] CEB-FIP, Design of concrete structures. CEB-FIP-Model-Code, British Standard Institution: London, UK, 1990. doi: phopd.35447 [Crossref] [19] Ngo, T.D., Behaviour of high strength concrete subject to impulsive loading, PhD Dissertation, The University of Melbourne, Australia, 2005.
[20] Scott, B.D., Park, R. & Priestley, M., Stress–strain behavior of concrete confi ned by overlapping hoops at low and high strain rates. ACI Journal, 79(1), pp. 13–27, 1982. doi: [Crossref] [21] Soroushian, P. & Choi, K., Steel mechanical properties at different strain rates. Journal of Structural Engineering, 113(4), pp. 63–672, 1987. doi: [Crossref] [22] Shao, Y. & Mirmiran, A., Nonlinear cyclic response of laminated glass FRP tubes fi lled with concrete. Composite Structures, 65(1), pp. 91–101, 2004. doi: [Crossref] [23] Kuksenko, V.S. & Tamuzs, V., Fracture Micromechanics of Polymer Materials, Martinus Nijhoff Publishers: The Hague (Series on Fatigue and Fracture), 1981. doi: [Crossref] [24] AT Blast Software, Applied Research Associates of Vicksburg, MS, available at: http://www.ara.com/products/AT-blast.htm.
[25] Ngo, T., Mendis, P., Teo, D. & Kusuma, G., Behavior of high-strength concrete columns subjected to blast loading, 7th International Conference on Steel-Concrete Composite Structures, Sydney, Australia, pp. 23–25, ASCCS, 2003.
[26] Berger/Abam Engineers, Seismic Design of Bridges – Design Example No. 8. Report for National Cooperative Highway Research Program (NCHRP), Report no. A99067, Project 12-49, Washington, DC, 2001.
[27] SPSS, Inc., SPSS 11.5 for Windows, SPSS, Inc.: Chicago, IL. doi: [Crossref] [28] Box, G.E.P. & Cox, D.R., An analysis of transformation (with discussion). Journal of Royal Statistical Society, Series B, 26, pp. 211–252, 1964.
[29] Shaat, A. & Fam, A., Effectiveness of different composite materials for repair of steel bridge girders, 3rd International Conference on FRP Composites in Civil Engineering, Miami, FL, pp. 721–724, CICE, 2006.
[30] Teng, J.G. & Hu, Y.M., Theoretical model for FRP-confi ned circular concrete-fi lled steel tubes under axial compression, 3rd International Conference on FRP Composites in Civil Engineering, Miami, FL, pp. 503–506, CICE, 2006.
[31] Kaul, R., Ravindrarajah, R.S. & Smith, S.T., Deformational behavior of FRP confi ned concrete under sustained compression, 3rd Int’l. Conf. FRP Composites in Civil Engineering, Miami, FL, pp. 207–210, CICE, 2006.