Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.
Analysis of Hydrogen Bubble Flow Between Nanorods Using Lattice Boltzmann Method
Abstract:
Lattice Boltzmann method (LBM) is used to model the hydrogen production by splitting water by incident sunlight over Si nanorods. The purpose of this study is to investigate the transport and the formation of the hydrogen bubbles by electrochemical reactions with a 2D and a 3D numerical model using LBM. An ordered array of nanorods is created where each rod is 10 μm in high and 10 nm in diameter. The numerical models are simulated using MATLAB and parallel computing with the program Palabos. A reaction–advection–diffusion transport for two components is analyzed with electrochemical reactions. This process is further coupled with the momentum transport. The effect of different bond numbers and contact angels on the simulation results are analyzed. It has here been shown that LBM can be used to evaluate the transport processes at microscale and it is possible to include the effect of electrochemical reactions on the transport processes. An increased Bond number increases the bubble flow through the nanorod domain. A decreased contact angle facilitates the disconnection of the bubble to the nanorod at the top surface. The collection of the hydrogen bubbles at the top surface of the nanorods will be facilitated by an easy disconnection of the bubbles.
