Javascript is required
1.
Ross, B., The diversion capacity of capillary barriers. Water Resources Research, 26(10), pp. 2625–2629, 1990. doi: [Crossref]
2.
Abdolahzadeh, A.M., Vachon, B.L. & Cabral, A.R., Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Canadian Geotechnical Journal, 48(7), pp. 996–1009, 2011. doi: [Crossref]
3.
Wohnlich, S., Untersuchungsbericht-Dichtigkeitsnachweis der Kombikapillardichtung (KKD). 3. Kipprinnenversuch, Bochum, 2006.
4.
Wohnlich, S. & Bitomski, K., Kombi-Kapillar-Dichtungs-Systeme zur Obelfl chenabdichtung von Deponien und Altlasten. 22. Fachtagung Die sichere Deponie, Sicherung von Deponien und Altlasten mit Kunststoffen, Wurzburg, 2006.
5.
Oldenburg, C.M. & Pruess, K., On numerical modeling of capillary barriers. Water-Resources Research, 29(4), pp. 1045–1056, 1993. doi: [Crossref]
6.
Webb, S.W., Generalization of Ross’ tilted capillary barrier diversion formula for different two-phase characteristic curves. Water Resources Research, 33(8), pp. 1855-1859, 1997. doi: [Crossref]
7.
Trpkosova, D. & Mls, J., The infl uence of artifi cial sealing on the capillary barrier’s function. Waste Management, 30(1), pp. 125–131, 2010. doi: [Crossref]
8.
Morris, C.E. & Stormont, J.C., Evaluation of numerical simulations of capillary barrier field tests. Geotechnical and Geological Engineering, 16, pp. 201–213, 1998. doi: [Crossref]
9.
Trpkosova, D. & Mls, J., Effi ciency of capillary barriers in relation to retention curves data. Acta Geodynamica et Geomaterialia, 7(2), pp. 201–207, 2010.
10.
Trpkosova, D. & Mls, J., Hydraulic characteristics of capillary barrier in relation to its efficiency. Acta Hydrologica Slovaca, 9(2), pp. 170–178, 2008. (in Czech).
11.
Powers, M.C., A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), pp. 117–119, 1953.
12.
Havllcek, J. & Myslivec, A., The Infl uence of Saturation and Stratifi cation on the Shearing Properties of Certain Soils. In Proceedings 6th Int. Conf. Soil and Mech. Found. Engineering, 1, pp. 235-239. University of Toronto Press, 1965.
13.
Kuraz, V., Kucerova, A. & Kuraz, M., The use of genetic algorithms for retentioncurves approximation. In Proceedings of the Conference Days of Soil Physics, Velke Bilovice, 2003. (in Czech).
14.
van Genuchten, M.T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), pp. 892–898, 1980. doi: [Crossref]
15.
van Genuchten, M.T., Leu, F.J. & Yates, S.R., The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, EPA: California, 1991.
16.
Mualem, Y., New model for predicting hydraulic conductivity of unsaturated porousmedia. Water Resources Research, 12(3), pp. 513–522, 1976. doi: [Crossref]
17.
Vogel, T., Documentation of the S2D Code - Version 2.0, CTU Praha, 1999. (internal).
18.
Mls, J., Description of the M.GS.vOl code. UK Praha, 2002. (in Czech, unpublished).
Search

Acadlore takes over the publication of IJCMEM from 2025 Vol. 13, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

Open Access
Research article

On the Reliability of Mathematical Modelling of Capillary Barriers

Jiri Mls1,2,
Dagmar Trpkosova1,2
1
Charles University in Prague, Faculty of science, Albertov 6, 128 43 Praha 2, Czech Republic
2
Division of Chemistry of Fuel Cycle and Waste Management, Hlavní 130, 250 68 Husinec-Řež, Czech Republic
International Journal of Computational Methods and Experimental Measurements
|
Volume 1, Issue 4, 2013
|
Pages 406-415
Received: N/A,
Revised: N/A,
Accepted: N/A,
Available online: N/A
View Full Article|Download PDF

Abstract:

The problem of the reliability of capillary-barriers’ modelling is studied making use of tipping trough measurements. In its first part, the article describes laboratory measurements of saturated hydraulic conductivities and retention curves of four materials of two different capillary barriers. Both the main branches of the retention curves were measured, and the unsaturated hydraulic conductivities and capacity functions were determined. The second part of the article describes numerical modelling of two tipping trough experiments. The obtained results are compared with the measured data. The comparison shows a good agreement that is presented and discussed. It is concluded that, in the case of capillary barrier materials, the laboratory measurements made on samples and the subsequent math- ematical modelling can substitute for the tipping trough experiments.

Keywords: Capillary barrier, Retention curve, Hydraulic characteristics, Suction apparatus, Hydraulic conductivity, Tipping trough

References
1.
Ross, B., The diversion capacity of capillary barriers. Water Resources Research, 26(10), pp. 2625–2629, 1990. doi: [Crossref]
2.
Abdolahzadeh, A.M., Vachon, B.L. & Cabral, A.R., Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Canadian Geotechnical Journal, 48(7), pp. 996–1009, 2011. doi: [Crossref]
3.
Wohnlich, S., Untersuchungsbericht-Dichtigkeitsnachweis der Kombikapillardichtung (KKD). 3. Kipprinnenversuch, Bochum, 2006.
4.
Wohnlich, S. & Bitomski, K., Kombi-Kapillar-Dichtungs-Systeme zur Obelfl chenabdichtung von Deponien und Altlasten. 22. Fachtagung Die sichere Deponie, Sicherung von Deponien und Altlasten mit Kunststoffen, Wurzburg, 2006.
5.
Oldenburg, C.M. & Pruess, K., On numerical modeling of capillary barriers. Water-Resources Research, 29(4), pp. 1045–1056, 1993. doi: [Crossref]
6.
Webb, S.W., Generalization of Ross’ tilted capillary barrier diversion formula for different two-phase characteristic curves. Water Resources Research, 33(8), pp. 1855-1859, 1997. doi: [Crossref]
7.
Trpkosova, D. & Mls, J., The infl uence of artifi cial sealing on the capillary barrier’s function. Waste Management, 30(1), pp. 125–131, 2010. doi: [Crossref]
8.
Morris, C.E. & Stormont, J.C., Evaluation of numerical simulations of capillary barrier field tests. Geotechnical and Geological Engineering, 16, pp. 201–213, 1998. doi: [Crossref]
9.
Trpkosova, D. & Mls, J., Effi ciency of capillary barriers in relation to retention curves data. Acta Geodynamica et Geomaterialia, 7(2), pp. 201–207, 2010.
10.
Trpkosova, D. & Mls, J., Hydraulic characteristics of capillary barrier in relation to its efficiency. Acta Hydrologica Slovaca, 9(2), pp. 170–178, 2008. (in Czech).
11.
Powers, M.C., A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), pp. 117–119, 1953.
12.
Havllcek, J. & Myslivec, A., The Infl uence of Saturation and Stratifi cation on the Shearing Properties of Certain Soils. In Proceedings 6th Int. Conf. Soil and Mech. Found. Engineering, 1, pp. 235-239. University of Toronto Press, 1965.
13.
Kuraz, V., Kucerova, A. & Kuraz, M., The use of genetic algorithms for retentioncurves approximation. In Proceedings of the Conference Days of Soil Physics, Velke Bilovice, 2003. (in Czech).
14.
van Genuchten, M.T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), pp. 892–898, 1980. doi: [Crossref]
15.
van Genuchten, M.T., Leu, F.J. & Yates, S.R., The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, EPA: California, 1991.
16.
Mualem, Y., New model for predicting hydraulic conductivity of unsaturated porousmedia. Water Resources Research, 12(3), pp. 513–522, 1976. doi: [Crossref]
17.
Vogel, T., Documentation of the S2D Code - Version 2.0, CTU Praha, 1999. (internal).
18.
Mls, J., Description of the M.GS.vOl code. UK Praha, 2002. (in Czech, unpublished).

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Mls, J. & Trpkosova, D. (2013). On the Reliability of Mathematical Modelling of Capillary Barriers. Int. J. Comput. Methods Exp. Meas., 1(4), 406-415. https://doi.org/10.2495/CMEM-V1-N4-406-415
J. Mls and D. Trpkosova, "On the Reliability of Mathematical Modelling of Capillary Barriers," Int. J. Comput. Methods Exp. Meas., vol. 1, no. 4, pp. 406-415, 2013. https://doi.org/10.2495/CMEM-V1-N4-406-415
@research-article{Mls2013OnTR,
title={On the Reliability of Mathematical Modelling of Capillary Barriers},
author={Jiri Mls and Dagmar Trpkosova},
journal={International Journal of Computational Methods and Experimental Measurements},
year={2013},
page={406-415},
doi={https://doi.org/10.2495/CMEM-V1-N4-406-415}
}
Jiri Mls, et al. "On the Reliability of Mathematical Modelling of Capillary Barriers." International Journal of Computational Methods and Experimental Measurements, v 1, pp 406-415. doi: https://doi.org/10.2495/CMEM-V1-N4-406-415
Jiri Mls and Dagmar Trpkosova. "On the Reliability of Mathematical Modelling of Capillary Barriers." International Journal of Computational Methods and Experimental Measurements, 1, (2013): 406-415. doi: https://doi.org/10.2495/CMEM-V1-N4-406-415
MLS J, TRPKOSOVA D. On the Reliability of Mathematical Modelling of Capillary Barriers[J]. International Journal of Computational Methods and Experimental Measurements, 2013, 1(4): 406-415. https://doi.org/10.2495/CMEM-V1-N4-406-415