Javascript is required
Search

Acadlore takes over the publication of IJEPM from 2025 Vol. 10, No. 3. The preceding volumes were published under a CC BY 4.0 license by the previous owner, and displayed here as agreed between Acadlore and the previous owner. ✯ : This issue/volume is not published by Acadlore.

This issue/volume is not published by Acadlore.
Volume 8, Issue 4, 2023
Open Access
Research article
Lumped Capacitance Thermal Modelling Approaches for Different Cylindrical Batteries
aanandsundar arumugam ,
bernardo buonomo ,
mario luiso ,
oronzio manca
|
Available online: 12-28-2023

Abstract

Full Text|PDF|XML

In the pursuit of optimal energy storage solutions, rechargeable batteries have gained significant attention for their applications in electric vehicles, aircraft, and satellites. This research focuses on the thermal management of lithium manganese dioxide and nickel-cadmium batteries, utilizing the lumped capacitance thermal modelling technique in the preliminary stage of analysis. The study focuses on the general lumped capacitance thermal equation to estimate battery temperature through analytical and numerical methods. The numerical approach employs the fourth order Runge-Kutta’s method, which involved less computational cost, relatively stable and accurate to estimate the temperature with a variable internal resistance, a crucial factor in thermal behaviour analysis. In contrast, the analytical approach assumes a uniform temperature distribution across the battery's surface, simplifying the gradual variance between internal conductive and external convective thermal resistances. A comparative analysis against experimental data using error criterion techniques reveals that the numerical model, considering dynamic changes in internal resistance, aligns more closely with experimental findings and offers a statistically superior fit compared to the analytical model assuming constant internal resistance. This study underscores the effectiveness of the lumped capacitance thermal modelling technique in battery thermal management, emphasizing the importance for dynamic internal resistance for analysis of thermal behaviour.

Open Access
Research article
Evaluation of 15-m-Height Solar Chimney Model Integrated with TES under Tropical Climate
Hussain H. Al-Kayiem ,
Hasanain A. Abdul Wahhab ,
iylia e. a. jamil ,
Mohamed M. Mohamed ,
ibrahim m. mohamed
|
Available online: 12-28-2023

Abstract

Full Text|PDF|XML

The present study examines a solar chimney power generation model under tropical conditions, with a focus on the impact of ground absorber dimensions on system efficacy. An experimental and numerical analysis was conducted using a 15-meter-high solar chimney, where the ground was transformed into a sensible thermal energy storage system through the application of black-painted pebbles. Three configurations were assessed to determine system performance: Case-1 and Case-2, featuring collector diameters of 4.9 m and 6.6 m respectively, and Case-3, which introduces an innovative design extending the diameter of the sensible thermal energy storage (TES) by 2.0 m beyond the collector’s canopy. Performance was gauged using a metric defined by the product of mass flow rate and temperature increase of the air. Numerical models were validated against experimental outcomes, with results showing a satisfactory correlation. It was found that the performance metric in Case-2 doubled, while in Case-3, it tripled relative to Case-1. The enhancement in performance in Case-3 was further evidenced by a 30.4% increase in air velocity at the chimney base over Case-2, and a 36.7% increase over Case-1, highlighting the efficacy of the extended sensible TES. These findings suggest that enlarging the TES area beyond the collector's canopy can significantly improve solar chimney performance, potentially enabling a reduction in construction scale and a concurrent decrease in electricity production costs. This approach represents a promising avenue for addressing the dual challenges of structural height and efficiency that currently hamper the feasibility of solar chimney power generation on an industrial scale.

Open Access
Research article
Design and Simulation of a Renewable Energy-Based Smart Grid for Ma’an City, Jordan: A Feasibility Study
Mais Alzgool ,
abdullah adnan khalaf ,
omran nasan ,
laith khatabi ,
mohammad ali alrifai
|
Available online: 12-28-2023

Abstract

Full Text|PDF|XML

The escalating costs, transmission losses, and environmental ramifications associated with fossil fuel utilization have catalyzed a paradigm shift towards Renewable Energy Sources (RES) in electricity generation. Smart Grid (SG) technologies, which are inherently reliant on a RES-exclusive electricity framework, facilitate efficient energy consumption and the distribution of decentralized energy resources. This investigation underscores the integration of RES within SG infrastructure and the potential for Jordan’s transition towards an SG-enabled future. Situated in a locale characterized by abundant solar irradiance and significant wind velocities, Ma’an city presents an optimal case study for RES deployment. An amalgamated RES system, comprising wind and photovoltaic (PV) modules with an aggregate capacity of 180 MW, has been meticulously sized and designed to cater to the electrical demand of Ma'an. The load requirements for Ma'an were determined through an analysis of the city's average annual energy consumption, adjusted for population growth projections. To bolster the system's reliability and cater to emergency load demands, a storage solution has been integrated. The performance of the proposed design was substantiated and assessed via mathematical modeling and simulation analysis, utilizing the MATLAB Simulink platform. The simulations were conducted accounting for factors impinging upon each system's production capacity, inclusive of transmission line losses. Moreover, a Proportional-Integral-Derivative (PID) controller was incorporated and evaluated under simulated fault conditions, ensuring system disconnection within a five-second window subsequent to fault detection. The simulation outcomes exhibited congruence with the mathematical model predictions. Economically, the installation of the proposed systems is justifiable, with projected savings of approximately 80 million Jordanian Dinars (JD) annually and a favorable payback period of 14 months. The levelized cost of electricity is competitively priced at 14.41 JD/MWh. The findings advocate for the expansion of RES integration across Jordan, suggesting the feasibility of a nationwide RES-based SG implementation.

Open Access
Research article
Impact of Magnetic Field on the Stability of Laminar Flame in a Counter Burner
ayad muter khlaif ,
Hasanain A. Abdul Wahhab ,
mehdi aliehyaei ehyaei
|
Available online: 12-28-2023

Abstract

Full Text|PDF|XML

This study investigates the influence of magnetic fields on the behavior of Liquefied Petroleum Gas (LPG)/air mixtures, with a particular focus on the stability limits and flame temperature. The primary objective is to elucidate the impact of magnetic fields on the modification of premixed and diffusion laminar combustion within a vertical counter-flow burner. An integrated experimental setup, encompassing a counter-flow burner, an optical image system, an electromagnetic induction charger, and a digital image processing technique, was employed. This apparatus array enabled the capture of flame images across varying intensities of magnetic field and air/fuel ratios, thereby providing comprehensive data on both diffusion and premixed flames. A sophisticated image processing technique was utilized to delineate details concerning the counter flame front’s geometry, including shape, area, and diameter. Acquired flame images were subsequently subjected to analysis using MATLAB software. Findings indicated a slight increase in flame temperature concurrent with the intensification of the magnetic field for both premixed and diffusion combustion. Notably, the presence of a magnetic field significantly enhanced flame stability across both flame categories. Furthermore, the flame disk operating area demonstrated a proportional expansion with the magnetic field intensity, with a more pronounced effect observed at 5000 gausses in the diffusion flame as compared to its premixed counterpart. In conclusion, this investigation underscores the pivotal role of magnetic fields in augmenting flame stability, offering valuable insights towards optimizing combustion processes.

Abstract

Full Text|PDF|XML

With the escalating demand for energy and the concomitant depletion of fossil fuel reserves, solar energy has emerged as a sustainable alternative, offering both energy conservation and power-saving benefits. The optimization of photovoltaic (PV) system performance through vigilant monitoring is essential for maximizing energy production. This study aims to devise a novel algorithm that derives from photocurrent measurements at the string level, alongside the aggregate current output of the PV array. Simulations of a PV string/array were executed using MATLAB/Simulink to discern the effects of solar irradiance and temperature fluctuations on current parameters. A representative model comprising two commercial PV modules arranged in series was employed to construct a four-string PV array for analysis. Findings indicate that photocurrent and overall current output are significantly influenced by solar irradiance, whereas increases in saturation and reverse saturation currents with temperature correspond to diminished current output. A rudimentary fault detection algorithm emerged from the simulation data, facilitating the identification of faults by juxtaposing the current from a PV string against a benchmark PV cell. Prompt detection and amelioration of faults—particularly those within groups two and three, which are characterized by 10–40% and greater than 40% reductions in current, respectively, and commonly associated with shading, soiling, and hotspots—are imperative for averting substantial energy yield losses and prolonging system longevity. It is crucial to acknowledge that daily variations in weather conditions may affect the algorithm’s efficacy, underscoring the need for ongoing refinement.

Abstract

Full Text|PDF|XML

In this investigation, the performance and emission profiles of a diesel engine, fueled by biodiesel derived from waste cooking oil (WCO), were evaluated. The biodiesel was incorporated into diesel fuel in various concentrations, and the potential enhancement of these mixtures with butanol was also explored. Experimental trials were conducted at a consistent engine speed of 2250 rpm across five distinct engine loads (4, 5.5, 7, 8.5, and 10 kW) to scrutinize engine performance and quantify exhaust emissions. An air-cooled, single-cylinder diesel engine served as the experimental apparatus. Pure Iraqi diesel (D) was used as a baseline, prior to the assessment of several fuel blends, including D80B20 (20% biodiesel, 80% diesel), D80B10BU10 (10% biodiesel, 10% butanol, 80% diesel), and D70B15BU15 (15% biodiesel, 15% butanol, 70% diesel). The results indicated a decline in engine performance across all fuel types, with the most pronounced deterioration observed at lower loads. The brake specific fuel consumption escalated by 13.37%, 16.98%, and 3.92% for the tested blends, relative to diesel. Concurrently, exhaust gas temperatures decreased by 12.5%, 23.5%, and 2.9%, respectively. Furthermore, CO emissions diminished by 22.00%, 46.0%, and 14.4%, while CO2 emissions rose by 16.67%, 41.36%, and 11.73%, respectively, when compared to diesel. HC concentrations were curtailed by 42.55%, 69.11%, and 10.64%, respectively. NOx emissions exhibited a reduction of 3.8% and 24.9% for D80B10BU10 and D70B15BU15, while a 3.5% increase was observed with D80B20. The findings suggest that ternary mixtures were associated with less favorable outcomes compared to their binary counterparts.

Abstract

Full Text|PDF|XML

Addressing pressing global challenges—such as energy crises, population growth, food scarcity, resource depletion, and global warming—requires innovative and sustainable solutions. Biomass-derived wood pellets present a promising eco-friendly energy alternative. This study investigates the conversion of agricultural residues into wood pellets, utilizing two distinct biomass compositions. Composition A comprises equal parts young coconut fiber, empty palm fruit bunches, and sawdust (1:1:1 ratio), while Composition B uses a 1:1:0.5 ratio of the same materials. Laboratory analyses were conducted in accordance with Indonesian National Standard (SNI) SNI 8021:2014 to determine the physical and chemical properties of the resulting wood pellets. It was found that the moisture content of Composition A ranged from 3.52% to 4.59% in Composition B, while ash content was significantly higher in Composition A at 10.09%, compared to 4.25% for Composition B. The energy content was measured to be approximately 4102 Kcal/Kg (17,173 MJ/Kg) for Composition A and 4613 Kcal/Kg (19,313 MJ/Kg) for Composition B. The results indicate that the moisture content and calorific value of the wood pellets are in compliance with several international standards, including SNI 8021:2014 (Indonesia), ONORM M7135 (Austria), and DIN 51731 (Germany). However, the ash content of Composition A exceeds these standards. The findings suggest that optimal composition ratios can yield biomass pellets that contribute to sustainable energy solutions in line with Indonesia's renewable energy goals and the broader Sustainable Development Goals (SDGs).

- no more data -